# Find suitable number of teeth for gears the number of

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: is 600 mm. If one shaft runs at 120 r.p.m. and the other at 360 r.p.m., find the number of teeth on each wheel, if the module is 8 mm. Also determine the exact distance apart of the shafts. [Ans. 114, 38 ; 608 mm] In a reverted gear train, as shown in Fig. 13.32, two shafts A and B are in the same straight line and are geared together through an intermediate parallel shaft C. The gears connecting the shafts A and C have a module of 2 mm and those connecting the shafts C and B have a module of 4.5 mm. The speed of shaft A is to be about but greater than 12 times the speed of shaft B , and the ratio at each reduction is same. Find suitable number of teeth for gears. The number of teeth of each gear is to be a minimum but not less than 16. Also find the exact velocity ratio and the distance of shaft C from A and B . [Ans. 36, 126, 16, 56 ; 12.25 ; 162 mm] Fig. 13.32 In an epicyclic gear train, as shown in Fig.13.33, the number of teeth on wheels A , B and C are 48, 24 and 50 respectively. If the arm rotates at 400 r.p.m., clockwise, find : 1. Speed of wheel C when A is fixed, and 2. Speed of wheel A when C is fixed. [Ans. 16 r.p.m. (clockwise) ; 16.67 (anticlockwise)] Fig. 13.33 Fig. 13.34 Chapter 13 : Gear Trains 5. 6. 475 In an epicyclic gear train, as shown in Fig. 13.34, the wheel C is keyed to the shaft B and wheel F is keyed to shaft A . The wheels D and E rotate together on a pin fixed to the arm G. The number of teeth on wheels C, D, E and F are 35, 65, 32 and 68 respectively. If the shaft A rotates at 60 r.p.m. and the shaft B rotates at 28 r.p.m. in the opposite direction, find the speed and direction of rotation of arm G. [Ans. 90 r.p.m., in the same direction as shaft A ] An epicyclic gear train, as shown in Fig. 13.35, is composed of a fixed annular wheel A having 150 teeth. The wheel A is meshing with wheel B which drives wheel D through an idle wheel C, D being concentric with A . The wheels B and C are carried on an arm which revolves clockwise at 100 r.p.m. about the...
View Full Document

## This note was uploaded on 02/13/2014 for the course MIE 301 taught by Professor Celghorn during the Fall '08 term at University of Toronto- Toronto.

Ask a homework question - tutors are online