# Pm clockwise ans and speed of the wheel p n p y1 x1

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: that of Q, therefore y1 – x1 × Wheel P y1 + x1 × TY TX × TQ TP Chapter 13 : Gear Trains ∴ y 1 = 0.2 x 1 – 300 Also ∴ l 471 ...(iii) Speed of wheel Y = Speed of wheel Z or shaft I x 1 + y 1 = x + y = – 1500 x 1 + 0.2 x 1 – 300 = – 1500 ...(iv) ...[From equation (iii)] 1.2 x 1= – 1500 + 300 = – 1200 or x 1 = – 1200/1.2 = – 1000 and y 1 = – 1500 – x 1 = – 1500 + 1000 = – 500 1. Speed and direction of the driven shaft O and the wheel P Speed of the driven shaft O, N O = y 1 = – 500 = 500 r.p.m. clockwise Ans. and Speed of the wheel P, N P = y1 + x1 × TY TX 24 36 × = – 500 – 1000 × × 120 144 TQ TP = – 550 = 550 r.p.m. clockwise Ans. 2. Torque tending to rotate the fixed wheel R We know that the torque on shaft I or input torque T1 = 7500 × 60 P × 60 = = 47.74 N-m 2π × N1 2π × 1500 and torque on shaft O or output torque, T2 = η × P × 60 0.8 × 7500 × 60 = = 114.58 N-m 2π × NO 2π × 500 Since the input and output shafts rotate in the same direction (i.e. clockwise), therefore input and output torques will be in opposite direction. ∴ Torque tending to rotate the fixed wheel R = T2 – T 1 = 114.58 – 47.74 = 66.84 N-m Ans. Example 13.24. An epicyclic bevel gear train (known as Humpage’s reduction gear) is shown in Fig. 13.31. It consists of a fixed wheel C, the driving shaft X and the driven shaft Y. The compound wheel B-D can revolve on a spindle F which can turn freely about the axis X and Y. Show that (i) if the ratio of tooth numbers T B / T D is greater than TC / TE , the wheel E will rotate in the same direction as wheel A, and (ii) if the ratio TB / T D is less than TC / T E, the direction of E is reversed. If the numbers of teeth on wheels A, B, C, D and E are 34, 120, 150, 38 and 50 respectively and 7.5 kW is put into the shaft X at 500 r.p.m., what is Fig. 13.31 the output torque of the shaft Y, and what are the forces (tangential to the pitch cones) at the contact points between wheels D and E and between whee...
View Full Document

## This note was uploaded on 02/13/2014 for the course MIE 301 taught by Professor Celghorn during the Fall '08 term at University of Toronto- Toronto.

Ask a homework question - tutors are online