slides_Ch5_W[1]

Indeed lim pr ob zn n melissa tartari yale z lim

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ..g is the constant value Φ (z ): lim Pr ob (Zn n !∞ z ) = lim Φ (z ) = Φ (z ) n !∞ Let fZn jn = 1, ...g be such that Zn N (µ, 1) for all n; then it is easy a to verify that Zn is not N (0, 1). Indeed, lim Pr ob (Zn n !∞ Melissa Tartari (Yale) z ) = lim Φ (z n !∞ Econometrics µ ) = Φ (z µ ) 6 = Φ (z ) . 13 / 27 Asymptotic Normality: (trivial) Examples Let fZn jn = 1, ...g be such that Zn N (0, 1) for all n; then it is easy a to verify that Zn N (0, 1). Indeed, the limit of a constant sequence i.e. fΦ (z ) , Φ (z ) , ...g is the constant value Φ (z ): lim Pr ob (Zn n !∞ z ) = lim Φ (z ) = Φ (z ) n !∞ Let fZn jn = 1, ...g be such that Zn N (µ, 1) for all n; then it is easy a to verify that Zn is not N (0, 1). Indeed, lim Pr ob (Zn n !∞ z ) = lim Φ (z n !∞ µ ) = Φ (z µ ) 6 = Φ (z ) . Let fZn jn = 1, ...g be such that Zn N (µ, 1) for all n; then it is easy a 0 to verify that Zn Zn µ N (0, 1). 0 Indeed,limn !∞ Pr ob (Zn z ) = limn !∞ Φ (z ) = Φ (z ). Melissa Tartari (Yale) Econometrics 13 / 27 Asymptotic Normality: the Central Limit Theorem I Let fY...
View Full Document

This note was uploaded on 02/13/2014 for the course ECON 350 taught by Professor Donaldbrown during the Fall '10 term at Yale.

Ask a homework question - tutors are online