41 looking for values and vectors v for which av v av

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: • Find eigenvalues and eigenvectors of A = . 41 • Looking for values λ and vectors v for which Av = λv. Av − λ v = 0 (A − λI )v = 0 det(A − λI ) = 0 ￿ ￿ 1−λ 1 det =0 4 1−λ (1 − λ) − 4 = 0 2 Matrix review (eigen-calculations) ￿ ￿ 11 • Find eigenvalues and eigenvectors of A = . 41 • Looking for values λ and vectors v for which Av = λv. Av − λ v = 0 (A − λI )v = 0 det(A − λI ) = 0 ￿ ￿ 1−λ 1 det =0 4 1−λ (1 − λ) − 4 = 0 2 (λ − 2λ − 3 = 0) 2 Matrix review (eigen-calculations) ￿ ￿ 11 • Find eigenvalues and eigenvectors of A = . 41 • Looking for values λ and vectors v for which Av = λv. Av − λ v = 0 (A − λI )v = 0 det(A − λI ) = 0 ￿ ￿ 1−λ 1 det =0 4 1−λ (1 − λ) − 4 = 0 2 (λ − 2λ − 3 = 0) λ = 1 ± 2 = −1, 3 2 Matrix review (eigen-calculations) ￿ ￿ 11 • Find eigenvalues and eigenvectors of A = . 41 • Looking for values λ and vectors v for which Av = λv. Av − λ v = 0 (A − λI )v = 0 det(A − λI ) = 0 ￿ ￿ 1−λ 1 det =0 4 1−λ (1 − λ) − 4 = 0 2 (λ − 2λ − 3 = 0) λ = 1 ± 2 = −1, 3 • What are the eigenvectors associated with λ￿ ￿ 1=-1? (A) v1 (B) v1 (C) v1 2 (D) v1 1 = −2 ￿￿ 1 =c −2 ￿￿ 2 = 1 ￿￿ 2 =c 1 (E) Explain, please. Matrix review (eigen-calculations) ￿ ￿ 11 • Find eigenvalues and eigenvectors of A = . 41 • Looking for values λ and vectors v for which Av = λv. Av − λ v = 0 (A − λI )v = 0 det(A − λI ) = 0 ￿ ￿ 1−λ 1 det =0 4 1−λ (1 − λ) − 4 = 0 2 (λ − 2λ − 3 = 0) λ = 1 ± 2 = −1, 3 • What are the eigenvectors associated with λ￿ ￿ 1=-1? (A) v1 (B) v1 (C) v1 2 (D) v1 1 = −2 ￿￿ 1 =c −2 ￿￿ 2 = 1 ￿￿ 2 =c 1 (E) Explain, please. Matrix review (eigen-calculations) ￿ ￿ 11 • Find eigenvalues and eigenvectors of A = . 41 • Looking for values λ and vectors v for which Av = λv. Av − λ v = 0 (A − λI )v = 0 det(A − λI ) = 0 ￿ ￿ 1−λ 1 det =0 4 1−λ (1 − λ) − 4 = 0 2 (λ − 2λ − 3 = 0) λ = 1 ± 2 = −1, 3 2 Matrix review (ei...
View Full Document

This note was uploaded on 02/12/2014 for the course MATH 256 taught by Professor Ericcytrynbaum during the Spring '13 term at The University of British Columbia.

Ask a homework question - tutors are online