HeatTransfer-I-Section-5

2 we can use just one term in the summaons j0 and j1

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ∞ T - T∞ 2 Temperature = ∑ Cn cos ζn x L exp( −ζn FoL ) Ti - T∞ n =1 2 sin ζn Fourier Coefficient Cn = ζn + cos ζn sinζn Eigenvalues ζn tan ζn = BiL ∞ 2 k (Ti - T∞ ) ζn sin2 ζn Surface Heat Flux (One Side) q' ' = ∑ ζ + cosζ sinζ exp(−ζn2FoL ) L n n n =1 n ∞ 2 Q 1 sin ζn 2 Total Heat Flow = 1 − 2∑ exp( −ζn FoL ) Qi n =1 ζn ζn + cos ζn sin ζn ( ) Initial Energy Content Qi = 2 ALρc p (Ti − T∞ ) •  Single Term Approxima/ons € –  When Fo > 0.2 we can use just one term in the summa/ons. 16 Transient Conduc/on 17 •  Infinite Cylinder (L > 10R) ∞ Temperature Fourier Coefficient Eigenvalues T - T∞ 2 = ∑ Cn J 0 ζn r R exp( −ζn FoR ) Ti - T∞ n =1 J1 (ζn ) 2 Cn = 2 ζn J 0 (ζn ) + J12 (ζn ) ( ζn ∞ ) J1 (ζn ) = BiR J 0 (ζn ) J12 (ζn ) Surface Heat Flux 2 k (Ti − T∞ ) q' ' = ∑ J 2 (ζ ) + J 2 (ζ ) exp(−ζn2FoR ) R n =1 0 n 1 n Total Heat Flow ∞ J12 (ζn ) Q 2 = 1 − 4∑ 2 2 exp( −ζn FoR ) 2 Qi n =1 ζn J 0 (ζn ) + J1 (ζn ) [ Ini...
View Full Document

Ask a homework question - tutors are online