Unformatted text preview: = 0.01
20
0 .2
0  7079 [70,80)
49
40
0.4 = 0.008
20
0.2
100
80−70 == 0.02
10
0 .1
50  8089 [80,90)
69
20
0.2 = 00.01
10
.1
100
90−80 = 0.01
70  79
20
0.2
0.02
10
0 .1
9099 [90,100)
10
.1
100 = 00.01
100−90 = 0.01
80  89
10
0.1
90  99
10
0.1
0.01
For grading, treating bin 0 − 49 having length 49 is regarded as valid this time only.
The histograms below is the histogram obtained using the density variable for the data above.
(b) For the histogram, 0.010
0.000 0.005 Density 0.015 0.020 Histogram of scores 0 20 40 60 80 100 scores 7. Here’s the stemandleaf plotof the data. 7. (a) Steamandleaf plot
2 6 3
Stem Leaf17
2
64 58
5
3
17 116
6 0355689
4
58
7 011244667789
5
116 00233346799
8
6
0355689
9 12223566789
7
01124466789
10 0
8 Below, you’ll ﬁnd the histogram and the boxplot associated to the data above. Notice that
0023346799
9 since we chose classes of equal size for the histogram, we plotted the frequency and not the
12223566789
10 density.
0 (b) For the histogram, we demonstrate here the one with bin allocation: [20,30),[30,40),...,[80,90),[90,100].
Other choices for the endpoints are possible. 2 10 (a) : Scatterplot 3.
(b) : Scatterplot 1.
(c) : Scatterplot 2. 3...
View
Full Document
 Fall '11
 DANIELCONUS
 Statistics, Standard Deviation, Yi, sample median

Click to edit the document details