Lecture6(3)

# e ec kt 3 2 e ef 1 2 x 1 2mn n kt 3

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: =∫ E − Ec exp( )dE 2 3 Ec kT 2π let x = ( E − Ec ) / kT ∞ * 3/ 2 E − EF ∞ 1/ 2 − x 1 ( 2mn ) n= ( kT )3 / 2 exp( − c ) ∫ x e dx 2 3 0 kT 2π ∞ Integration ∫ x 1/ 2e − x dx = 0 π 2 * 3/ 2 E − EF π 1 ( 2mn ) n= ( kT )3 / 2 exp( − c ) 2 3 kT 2 2π 3/ 2 3/ 2 ! m* kT \$ ! m* kT \$ E − EF = 2 # n 2 & exp( − c ) where Nc = 2 # n 2 & # 2π & # 2π & kT " % " % EE 332 Spring 2013 Equilibrium Hole Concentration Equilibrium Hole Concentration EE 332 Spring 2013 Effective Density Effective Density of Stateof States Eqn. 3-16a and 3-20 in Streetman’s book EE 332 Spring 2013 Example At room temperature (T=300 K), calculate equilibrium electron and hole concentrations in silicon when EF is 0.26 eV below Ec. For silicon Nc = 2.8 × 1019 cm −3 n0 = Nc e = Nc e −( Ec −EF ) / kT = 1.3 × 10 cm p0 = Nv e −( EF −Ev ) / KT = Nv e −0.86 / KT −0.26 / kT 15 Nv = 1.1× 1019 cm −3 −3 = 4.7 × 104 cm −3 Note: Fermi energy is shifted due to doping. Changing Ef only 0.26 eV (Eg/4) results in the carrier conc...
View Full Document

## This document was uploaded on 02/18/2014.

Ask a homework question - tutors are online