sample-midterm2-with-solutions-v2

2x2 1 1 x 2 5 determine the following limits a cot2q

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 ) 2 - 3 x 2 · (1 + x 2 ) 2 ÷ ç ÷ è ø -5 = -(1 + x 2 ) 2 · (1 + x 2 - 3 x 2 ) = 2x2 - 1 5 (1 + x 2 ) 2 Q5. = 2x2 - 1 ( 1 + x 2 )5 Determine the following limits: a. cot(2q ) . q ® 0 csc(q ) lim b. 3x 5 + x - 50 x ®¥ 6 x 4 - 2 x 2 + 10 lim Solution a. lim q ®0 cot(2q ) cos(2q ) sin(q ) cos(2q ) sin(q ) 1 = lim × = lim × × q ® 0 sin(2q ) q ®0 csc(q ) 1 1 1 sin(2q ) = = lim q ®0 cos(2q ) sin(q ) 2q 1 × × × 1 sin(2q ) 2 q 1 cos(2q ) sin(q ) 2q × lim × lim lim q ®0 q ® 0 sin(2q ) 2 q ®0 1 q = 1 1 ×1 × 1 × 1 = . 2 2 b. 2 b. 1 50 ö 1 50 ö æ æ x5 ç 3 + 4 - 5 ÷ ç lim 3+ lim 4 - lim 5 ÷ x®¥ x x®¥ x x®¥ 3 x + x - 50 x xø ø = lim è = lim x · è lim 4 2 x ® ¥ 6 x - 2 x + 10 x®¥ x®¥ 2 10 ö 2 10 ö æ æ x4 ç 6 - 2 + 4 ÷ ç lim 6 - lim 2 + lim 4 ÷ x®¥ x x®¥ x x xø è è x¬¥ ø () 5 ( 30 ) ((6 + 0 - 0)) - +0 = lim x × x ®¥ = ( lim x ) × 1 2 x ®¥ =¥ Q6. Find all numbers c that satisfy the conclusion of the Mean Value Theorem for f (...
View Full Document

This document was uploaded on 02/19/2014 for the course MATH Math 113/1 at Grant MacEwan University.

Ask a homework question - tutors are online