Unformatted text preview: + u and y2 = (x + 1)u + 2u.
Let = solution u DE + −∞ < x y2 =
1
ii) Find second solution:
Substitute into DE:
(b) Let y2 = u(x)y1 = u(x)(x + 1). Then y2 = (x + 1)u + u and y2 = (x + 1)u + 2u.
2
x + DE:
Substitute (into 1) [(x + 1)u + 2u ] + 2(x + 1)[(x + 1)u + u] − 2(x + 1)u = 0
x 1) 1)3 u ] − 2( + 1)2 u = 0
(x + 1)2 [(x + 1)u + 2u] + 2(x + 1)[(x(+ + u + u+ 4(xx + 1)u = 0 3
Let v = u , v = u to get first order DE (x + 1)(x + 1)3x + 4(v = 0. 2 u = 0
v + 4( u + 1)2 x + 1)
Solve as separable or linear DE. Assuming x > −1,
Let v = u , v = u to get first order DE (x + 1)3 v + 4(x + 1)2 v = 0.
1 Assuming >
Solve as separable or linear DE. dv = − x 4 −1,
v dx
x+1
1 dv
4
1
4
=−
dv
−
v dx =
x + 1 dx
x+1
v
1
4
ln dv| = −4 ln(x + dx + C0
|v
1)
−
v
x + 1 −4
ln |vv = −4(ln(x 1) 1) + C0
| = C1 x + +
−4
u = C 1(x + 1)−4
v = C1 (x + 1)
1
u...
View
Full Document
- Fall '12
- DavidHamsworth
- Sin, Trigraph, 2m, yp
-
Click to edit the document details