This preview shows page 1. Sign up to view the full content.
Unformatted text preview: ome arbitrary functions).
b) Find a particular solution up (x, y ), by using an approach similar to the
method of undetermined coeﬃcients (the “undetermined coeﬃcients” will
be function of x).
c) Form the general solution using the principle of superposition, and verify
that it is correct.
7. Consider the PDE (4) uyy + x2 uy = 0. a) Find the general solution.
b) Verify that your solution solves the DE.
c) Try to solve the boundary value problems consisting of the given equation
and the following boundary conditions. In each case state if there is a
unique solution, inﬁnitely many solutions, or no solution.
i) u(x, 0) = x2 ,
ii) u(x, 0) = x2 ,
iii) u(x, 0) = x2 , uy (0, y ) = y
uy (x, y ) y=x = ex
uy (1, y ) = e2y 8. Solve the PDE
2 u x + uy + u = 0
subject to the initial condition u(x, 0) = cos x.
9. Solve the initial value problem
3 y 2 ux
on the domain y 0. xuy = x, u(x, 0) = e x...
View
Full
Document
This homework help was uploaded on 02/22/2014 for the course AMATH 350 taught by Professor Davidhamsworth during the Fall '12 term at University of Waterloo, Waterloo.
 Fall '12
 DavidHamsworth

Click to edit the document details