0 r 0 9 c is the boundary of r and curl f 2i 3j 4k

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: apter 16 y 24. (a) (b) (1, 3), (3, 27) 25 R 15 5 x 1 2 3 4x3 −x4 3 3 3−4x+4x2 1 π /4 1 cos x π /4 25. A = (cos x − sin x)dx = dy dx = sin x 0 3y −4 −4 (−y 2 − 3y + 4)dy = 125/6 9−y 2 3 3 27. A = dx dy = −3 1−y 2 /9 −3 1 cosh x 1 28. A = dy dx = sinh x 0 6−3x/2 4 8(1 − y 2 /9)dy = 32 (cosh x − sinh x)dx = 1 − e−1 0 4 (3 − 3x/4 − y/2) dy dx = 29. 0 2 4 − x2 dy dx = 30. 0 [(3 − 3x/4)(6 − 3x/2) − (6 − 3x/2)2 /4] dx = 12 0 √ 4−x2 2 √ 2−1 1 dx dy = −4 224 15 0 −y 2 1 26. A = 0 x[(4x3 − x4 ) − (3 − 4x + 4x2 )] dx = x dy dx = (c) (4 − x2 ) dx = 16/3 0 0 √ 9−x2 3 (3 √ − 9−x2 31. V = −3 3 − x)dy dx = −3 x 1 1 (2x3 − x4 − x6 )dx = 11/70 (x2 + 3y 2 )dy dx = 32. V = x2 0 3 0 2 3 (9x2 + y 2 )dy dx = 33. V = 0 (18x2 + 8/3)dx = 170 0 1 0 1 y2 −1 (1/2 − y 2 + y 4 /2)dy = 8/15 √ 9−4x2 3/2 (y √ − 9−4x2 35. V = −3/2 3 1 (1 − x)dx dy = 34. V = −1 3/2 + 3)dy dx = −3/2 3 y 2 /3 6 9 − 4x2 dx = 27π/2 3 (9 − x2 )dx dy = 36. V = 0 (6 9 − x2 − 2x 9 − x2 )dx = 27π (18 − 3y 2 + y 6 /81)dy = 216/7 0 Exercise Set 16.2 578 √ 25−x2 5 5 25 − x2 dy dx = 8 37. V = 8 (25 − x2 )dx = 2000/3 0 0 0 √ 2 1−(y −1)2 38. V = 2 2 0 0 1 [1 − (y − 1)2 ]3/2 + y 2 [1 − (y − 1)2 ]1/2 dy, 3 (x2 + y 2 )dx dy = 2 0 π /2 let y − 1 = sin θ to get V = 2 1 cos3 θ + (1 + sin θ)2 cos θ cos θ dθ which eventually yields 3 −π/2 V = 3π/2 √ 1−x2 1 39. V = 4 0 0 √ 4−x2 2 40. V = √ 2 0 42. f (x, y )dy dx y2 0 e 1 y /4 4 47. 0 4 e−y dx dy = 2 0 0 0 3 x2 ex dx = (e8 − 1)/3 0 0 ln 3 3 x dx dy = 50. ey 0 1 2 ln 3 (9 − e2y )dy = 0 y2 2 0 1 y 2 sin(y 3 )dy = (1 − cos 8)/3 0 e 1 (ex − xex )dx = e/2 − 1 x dy dx = 52. 0 1 (9 ln 3 − 4) 2 2 sin(y 3 )dx dy = 51. 0 x2 2x cos(x2 )dx = sin 1 2 3 ex dy dx = 49. 0 f (x, y )dy dx 0 0 x2 2 46. 0 1 cos(x2 )dy dx = 0 √ x 1 1 −y2 ye dy = (1 − e−16 )/8 4 2x 1 48. sin x f (x, y )dy dx 0 f (x, y )dy dx ln x 1 45. ey 0 2 43. 0 π /2 f (x, y )dx dy 44. e2 x/2 8 f (x, y )dx dy 0 1 4 − x2 + (4 − x2 )3/2 dx = 2π 3 x2 2 41. (1 − x2 )3/2 dx = π/2 0 2 (x2 + y 2 )dy dx = 0 0 1 8 3 (1 − x2 − y 2 )dy dx = ex 0 4 53. (a) 2 √ x 0 sin πy 3 dy dx; the inner integral is non-elementary. y2 2 2 y 2 sin π y 3 dy = − sin π y 3 dx dy = 0 0 0 1 cos π y 3 3π 2 =0 0 579 Chapter 16 π /2 1 sec2 (cos x)dx dy ; the inner integral is non-elementary. (b) sin−1 y 0 π /2 sin x π /2 sec2 (cos x)dy dx = 0 0 √ 4−x2 2 54. V = 4 2 (x2 + y 2 ) dy dx = 4 0 π /2 128 64 64 + sin2 θ − sin4 θ 3 3 3 = 0 2 1 −2 −1 −1 −2 xy 2 dy dx 1 1 1 8 x dx + 3 −1 (x = 2 sin θ) 2 xy 2 dy dx + 0 = 2 dx 64 π 64 π 128 π 1 · 3 + − = 8π 32 34 3 2 2·4 dθ = 2 xy 2 dy dx + 55. 1 4 − x2 + (4 − x2 )3/2 3 x2 0 0 −1 sec2 (cos x) sin x dx = tan 1 0 0 7 x dx + 3 2 1 8 x dx = 0 3 56. This is the volume in the first octant under the surface z = π the sphere of radius 1, thus . 6 1 1 ¯ 57. Area of triangle is 1/2, so f = 2 x 0 1 dy dx = 2 1 + x2 1 0 1 − x2 − y 2 , so 1/8 of the volume of x π 1 − dx = − ln 2 1 + x2 1 + x2 2 2 (3x − x2 − x) dx = 4/3, so 58. Area = 0 3x−x2 2 ¯3 f= 4 0 (x2 − xy )dy dx = x 3 4 2 (−2x3 + 2x4 − x5 /2)dx = − 0 59. y = sin x and y = x/2 intersect at x = 0 and x = a = 1.895494, so a sin x 1 + x + y dy dx = 0.676089 V= 0 x/2 EXERCISE SET 16.3 π /2 sin θ 1. π /2 r cos θdr dθ = 0 0 π 0 1+cos θ π 2. r dr dθ = 0 0 0 π /2 a sin θ 1 (1 + cos θ)2 dθ = 3π/4 2 π /2 r2 dr dθ = 3. 0 0 π /3 0 cos 3θ 4. π /3 r dr dθ = 0 0 1−sin θ π 5. 0 0 1 sin2 θ cos θ dθ = 1/6 2 0 2 a3 sin3 θ dθ = a3 3 9 1 cos2 3θ dθ = π/12 2 π r2 cos θ dr dθ = 0 1 (1 − sin θ)3 cos θ dθ = 0 3 2 38 =− 4 15 5 Exercise Set 16.3 π 580 cos θ π r3 dr dθ = 6. 0 0 0 1−cos θ 2π 2π 7. A = 0 0 π /2 sin 2θ π /2 0 0 π /2 0 π /2 1 r dr dθ = 9. A = π/4 sin 2θ π /3 π/4 (4 − sec2 θ)dθ = 4π/3 − r dr dθ = sec θ 0 π /2 4 sin θ π /2 r dr dθ = π/6 2 π 1 (−2 cos θ − cos2 θ)dθ = 2 − π/4 1+cos θ π/2 3 9 − r2 dr dθ = r 13. V = 8 0 1 π /2 2 sin θ r2 dr dθ = 14. V = 2 0 0 π /2 √ (16 sin2 θ − 4)dθ = 4π/3 + 2 3 π r dr dθ = π /2 128 √ 2 3 dr dθ = 8 1 π /2 π /2 1 2 (1 − sin4 θ)dθ = 5π/32 0 π /2 3 0 dθ = 4π 0 3 sin θ π /2 sin4 θ dθ = 27π/16 r2 sin θ dr dθ = 9 17. V = 0 0 0 π /2 2 cos θ r 18. V = 4 0 2π 1 19. 2 0 π /2 9 − r2 dr dθ = 9 0 π /2 2r2 sin θ dr dθ = 0 0 dθ = (1 − e−1 )π 0 dθ = 9π/2 1 1 r dr dθ = ln 5 2 1+r 2 2 cos θ 22. (1 − sin3 θ)dθ = 0 2 0 π /2 π /2 r π /4 2π 1 (1 − e−1 ) 2 3 21. 32 3 4 − r2 dr dθ = 0 e−r r dr dθ = 20. 0 64 √ 2π 3 sin3 θ dθ = 32/9 0 π /2 dθ = 0 (1 − r2 )r dr dθ = 16. V = 4 π /2 π /2 16 3 cos θ 15. V = 2 0 3 π/6 12. A = 2 π/2 √ 0 11. A = 2 π/4 1 (1 − sin2 2θ)dθ = π/16 2 π /3 2 10. A = 2 0 sin2 2θ dθ = π/2 r dr dθ = 2 8. A = 4 0 1 (1 − cos θ)2 dθ = 3π/2 2 r dr dθ = 0 0 1 cos4 θ dθ = 3π/32 4 16 3 π /4 dθ = 0 π ln 5 8 π /2 cos3 θ sin...
View Full Document

Ask a homework question - tutors are online