# 2207 the range is 10551 y 14902 38 a 39 a the

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: he circle of radius 1 centered at (a, a2 ); therefore, the family of all circles of radius 1 with centers on the parabola y = x2 . (b) All parabolas which open up, have latus rectum equal to 1 and vertex on the line y = x/2. 24. (a) x = f (1 − t), y = g (1 − t) y 25. 2 1 -2 -1 1 -1 -2 2 x Supplementary Exercises 1 26. 40 Let y = ax2 + bx + c. Then 4a + 2b + c = 0, 64a + 8b + c = 18, 64a − 8b + c = 18, from which b = 0 32 6 and 60a = 18, or ﬁnally y = x− . 10 5 y 27. 2 1 x -1 1 2 -1 -2 28. 29. (b) R = R0 is the R-intercept, R0 k is the slope, and T = −1/k is the T -intercept (c) 1.1 = R0 (1 + 20/273), or R0 = 1.025 √ d = (x − 1)2 + ( x − 2)2 ; d = 9.1 at x = 1.358094 −1/k = −273, or k = 1/273 (d) (a) T = 126.55◦ C y 2 1 1 30. x 2 y d = (x − 1)2 + 1/x2 ; d = 0.82 at x = 1.380278 2 1.8 1.6 1.4 1.2 1 0.8 0.5 1 1.5 2 2.5 3 31. w = 63.9V , w = 63.9πh2 (5/2 − h/3); h = 0.48 ft when w = 108 lb 32. (a) (b) w = 63.9πh2 (5/2 − h/3); at h = 5/2, w = 2091.12 lb (b) N = 80 when t = 9.35 yrs (c) W 220 sheep 4000 3000 2000 1000 1 33. 2 3 4 h 5 N (a) 200 150 100 50 t 10 20 30 40 50 41 34. Chapter 1 (a) (b) T = 17◦ F, 27◦ F, 32◦ F (b) T = 3◦ F, −11◦ F, −18◦ F, −22◦ F (c) T v = 35, 19, 12, 7 mi/h 10 v 20 35. (a) WCI 20 v 10 20 30 40 50 -20 36. The domain is the set of all x, the range is −0.1746 ≤ y ≤ 0.1227. 37. The domain is the set −0.7245 ≤ x ≤ 1.2207, the range is −1.0551 ≤ y ≤ 1.4902. 38. (a) 39. (a) The potato is done in the interval 27.65 &lt; t &lt; 32.71. 91.54 min. (b) v (b) As t → ∞, (0.273)t → 0, and thus v → 24.61 ft/s. (d) No; but it comes very close (arbitrarily close). 25 20 15 10 5 t 1 (c) 2 3 4 5 For large t the velocity approaches c. (e) 3.013 s CHAPTER 1 HORIZON MODULE 0.25, 6.25 × 10−2 , 3.91 × 10−3 , 1.53 × 10−5 , 2.32 × 10−10 , 5.42 × 10−20 , 2.94 × 10−39 , 8.64 × 10−78 , 7.46 × 10−155 , 5.56 × 10−309 ; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1; 4, 16, 256, 65536, 4.29 × 109 , 1.84 × 1019 , 3.40 × 1038 , 1.16 × 1077 , 1.34 × 10154 , 1.80 × 10308 1. (a) 2. 2, 2.25, 2.2361111, 2.23606798, 2.23606798, . . . 3. (a) 111 1 1 1 ,,, , , 2 4 8 16 32 64 4. (a) yn+1 = 1.05yn (b) y0 =\$1000, y1 =\$1050, y2 =\$1102.50, y3 =\$1157.62, y4 =\$1215.51, y5 =\$1276.28 (c) yn+1 = 1.05yn for n ≥ 1 (b) (d) yn = 1 2n yn = (1.05)n 1000; y15 =\$2078.93 Horizon Module 1 5. (a) 42 x1/2 , x1/4 , x1/8 , x1/16 , x1/32 (b) They tend to the horizontal line y = 1, with a hole at x = 0. 1.8 0 3 0 6. (a) (b) 1 2 2 3 3 5 5 8 8 13 13 21 21 34 34 55 55 89 89 144 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ; each new numerator is the sum of the previous two numerators. (c) (d) F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. (e) the positive solution (a) y1 = cr, y2 = cy1 = cr2 , y3 = cr3 , y4 = cr4 (b) yn = crn (c) 7. 144 233 377 610 987 1597 2584 4181 6765 10946 , , , , , , , , , 233 377 610 987 1597 2584 4181 6765 10946 17711 If r = 1 then yn = c for all n; if r &lt; 1 then yn tends to zero; if r &gt; 1, then yn gets ever larger (tends to +∞). 8. The ﬁrst point on the curve is (c, kc(1 − c)), so y1 = kc(1 − c) and hence y1 is the ﬁrst iterate. The point on the line to the right of this point has equal coordinates (y1 , y1 ), and so the point above it on the curve has coordinates (y1 , ky1 (1 − y1 )); thus y2 = ky1 (1 − y1 ), and y2 is the second iterate, etc. 9. (a) 0.261, 0.559, 0.715, 0.591, 0.701 (b) It appears to approach a point somewhere near 0.65. CHAPTER 2 Limits and Continuity EXERCISE SET 2.1 1. (a) −1 (d) 1 (b) 3 (e) −1 (c) does not exist (f ) 3 2. (a) 2 (d) 2 (b) 0 (e) 0 (c) (f ) 3. (a) 1 (b) 1 (c) 1 (d) 1 (e) −∞ (f ) +∞ 4. (a) 3 (b) 3 (c) 3 (d) 3 (e) +∞ (f ) +∞ 5. (a) 0 (b) 0 (c) 0 (d) 3 (e) +∞ (f ) +∞ 6. (a) 2 (b) 2 (c) 2 (d) (e) −∞ (f ) +∞ 7. (a) −∞ (d) undef 8. (a) +∞ (b) +∞ (c) +∞ (d) 9. (a) −∞ (b) −∞ (c) −∞ (d) 1 3 (b) +∞ (e) 2 does not exist 2 (c) does not exist (f ) 0 (e) 0 (f ) −1 (e) undef 1 (f ) 2 10. (a) 1 (d) −2 (b) −∞ (e) +∞ (c) does not exist (f ) +∞ 11. (a) 0 (d) 0 (b) 0 (e) does not exist (c) 0 (f ) does not exist 12. (a) 3 (d) 3 (b) 3 (e) does not exist (c) 3 (f ) 0 13. for all x0 = −4 15. (a) At x = 3 the one-sided limits fail to exist. (b) At x = −2 the two-sided limit exists but is not equal to F (−2). (c) At x = 3 the limit fails to exist. (a) At x = 2 the two-sided limit fails to exist. (b) At x = 3 the two-sided limit exists but is not equal to F (3). (c) At x = 0 the two-sided limit fails to exist. 16. 14. 43 for all x0 = −6, 3 Exercise Set 2.1 17. (a) 44 2 1.5 1.1 1.01 1.001 0 0.5 0.9 0.99 0.999 0.1429 0.2105 0.3021 0.3300 0.3330 1.0000 0.5714 0.3690 0.3367 0.3337 1 The limit is 1/3. 0 2 0 (b) 2 1.5 1.1 1.01 1.001 1.0001 0.4286 1.0526 6.344 66.33 666.3 6666.3 50 The limit is +∞. 1 2 0 (c) 0 0.5 0.9 0.99 0.999 0.9999 −1 −1.7143 −7.0111 −67.001 −667.0 −6667.0 0 0 1 The limit is −∞. -50 18. (a) −0.25 −0.1 −0.001 −0.0001 0.0001 0.001 0...
View Full Document

Ask a homework question - tutors are online