27 n1 2 1 1 and n2 1 1 2 are normals to the given

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 10 = a = (b) r = = 1 5d 1 5 cos θ = d , if θ = π : r0 = d/6, θ = 0 : r1 = d/4, 5 − cos θ 1 1 (r1 + r0 ) = d 2 2 11 + 46 = 5 144/5 144 d, d = 144/5, r = = 24 5 − cos θ 25 − 5 cos θ √ 3d 3 , if θ = 3π/2 : r0 = d, θ = π/2 : r1 = 3d, 4 = b = 3d/ 7, 4 − 3 sin θ 7 1− √ 4√ 47 d= 7, r = 3 4 − 3 sin θ (c) r = 3 4d 3 4 sin θ = (d) r = 4 5d 4 5 cos θ = 1+ c = 10 = 4 1 1 (r1 − r0 ) = d 4 − 2 2 9 15. (a) e = c/a = (b) e = 1 2 (r1 1 2 (r1 = 16 45 45/2 45 d, d = , r= = 9 8 5 + 4 cos θ 10 + 8 cos θ − r0 ) r1 − r0 = r 1 + r0 + r0 ) r1 /r0 − 1 r1 1+e , e(r1 /r0 + 1) = r1 /r0 − 1, = r1 /r0 + 1 r0 1−e 16. (a) e = c/a = (b) e = 4d 4 , if θ = 0 : r0 = d; θ = π : r1 = 4d, 5 + 4 cos θ 9 1 2 (r1 1 2 (r1 + r0 ) r1 + r0 = r 1 − r0 − r0 ) r1 /r0 + 1 r1 e+1 , e(r1 /r0 − 1) = r1 /r0 + 1, = r1 /r0 − 1 r0 e−1 17. (a) T = a3/2 = 39.51.5 ≈ 248 yr (b) r0 = a(−e) = 39.5(1 − 0.249) = 29.6645 AU ≈ 4,449,675,000 km r1 = a(1 + e) = 39.5(1 + 0.249) = 49.3355 AU ≈ 7,400,325,000 km (c) r = a(1 − e2 ) 39.5(1 − (0.249)2 ) 37.05 ≈ ≈ AU 1 + e cos θ 1 + 0.249 cos θ 1 + 0.249 cos θ p/ 2 (d) 50 -30 20 0 -50 18. (a) In yr and AU, T = a3/2 ; in days and km, so T = 365 × 10−9 a 150 3/2 days. T = 365 a 150 × 106 3/2 , 439 Chapter 12 (b) T = 365 × 10−9 57.95 × 106 150 3/2 ≈ 87.6 days (c) From (17) the polar equation of the orbit has the form r = (d) 37.82 a(1 − e2 ) = 1 + e cos θ 1 + 0.205 cos θ p/2 40 -50 0 20 -40 19. (a) a = T 2/3 = 23802/3 ≈ 178.26 AU (b) r0 = a(1 e) ≈ 0.8735 AU, r1 = a(1 + e) ≈ 355.64 AU (c) r = 1.74 a(1 − e2 ) ≈ AU 1 + e cos θ 1 + 0.9951 cos θ p/ 2 (d) 20 0 -400 -20 20. (a) By Exercise 15(a), e = r 1 − r0 ≈ 0.093 r1 + r0 (b) r = 1 (a0 + a1 ) = 225,400,000 km ≈ 1.503 AU, so T = a3/2 ≈ 1.84 yr 2 (c) r = a(1 − e2 ) 1.49 ≈ AU 1 + e cos θ 1 + 0.093 cos θ (d) p/ 2 1.49 1.6428 1.3632 0 1.49 21. r0 = a(1 − e) ≈ 7003 km, hmin ≈ 7003 − 6440 = 563 km, r1 = a(1 + e) ≈ 10,726 km, hmax ≈ 10,726 − 6440 = 4286 km Chapter 12 Supplementary Exercises 440 22. r0 = a(1 − e) ≈ 651,736 km, hmin ≈ 581,736 km; r1 = a(1 + e) ≈ 6,378,102 km, hmax ≈ 6,308,102 km a → +∞. e 1 − e and lim d = +∞; Let d be the distance between the directrix and the focus, then d = a e→0 e but the center and the focus come together, so distance between the directrix and the center also tends to +∞. 23. Since the foci are ﬁxed, a is constant; since e → 0, the distance x2 y2 x2 y2 c x−a 24. (a) From Figure 12.4.22, 2 − 2 = 1, 2 − 2 = 1, (x − c)2 + y 2 = a b a c − a2 a c (x − c)2 + y 2 = x − a for x > 0. a (b) From Part (a), P F = 2 , PF c P D, = c/a. a PD CHAPTER 12 SUPPLEMENTARY EXERCISES √ 2. (a) ( 2, 3π/4) √ (b) (− 2, 7π/4) √ (c) ( 2, 3π/4) √ (d) (− 2, −π/4) 3. (a) circle (e) lima¸on c (b) rose (f ) none (c) line (g) none (d) lima¸on c (h) spiral 4. (a) r = 1/3 , ellipse, right of pole, distance = 1 1 + 1 cos θ 3 (b) hyperbola, left of pole, distance = 1/3 (c) r = 1/3 , parabola, above pole, distance = 1/3 1 + sin θ (d) parabola, below pole, distance = 3 5. (a) (b) p/ 2 p/ 2 (1, 9 ) 0 0 (c) p/ 2 (d) (e) p/ 2 0 p/ 2 (2, 3 ) 0 (1, 3 ) (1, # ) (–1, 3 ) 0 441 Chapter 12 6. Family I: x2 + (y − b)2 = b2 , b < 0, or r = 2b sin θ; Family II: (x − a)2 + y 2 = a2 , a < 0, or r = 2a cos θ 7. (a) r = 2a/(1 + cos θ), r + x = 2a, x2 + y 2 = (2a − x)2 , y 2 = −4ax + 4a2 , parabola (b) r2 (cos2 θ − sin2 θ) = x2 − y 2 = a2 , hyperbola √ √ (c) r sin(θ − π/4) = ( 2/2)r(sin θ − cos θ) = 4, y − x = 4 2, line (d) r2 = 4r cos θ + 8r sin θ, x2 + y 2 = 4x + 8y, (x − 2)2 + (y − 4)2 = 20, circle 9. (a) 2 4 45 7 5 2 12 c = e = and 2b = 6, b = 3, a2 = b2 + c2 = 9 + a2 , a2 = 9, a = √ , x + y =1 a 7 49 49 49 9 5 (b) x2 = −4py , directrix y = 4, focus (−4, 0), 2p = 8, x2 = −16y √ √ (c) For the ellipse, a = 4, b = 3, c2 = a2 − b2 = 16 − 3 = 13, foci (± 13, 0); √ 4 13 2 a, for the hyperbola, c = 13, b/a = 2/3, b = 2a/3, 13 = c2 = a2 + b2 = a2 + a2 = 9 9 x2 y2 a = 3, b = 2, − =1 9 4 10. (a) e = 4/5 = c/a, c = 4a/5, but a = 5 so c = 4, b = 3, (x + 3)2 (y − 2)2 + =1 25 9 (b) directrix y = 2, p = 2, (x + 2)2 = −8y (c) center (−1, 5), vertices (−1, 7) and (−1, 3), a = 2, a/b = 8, b = 1/4, y 11. (a) (b) 2 y (y − 5)2 − 16(x +1)2 = 1 4 y (c) 4 4 x -4 x 8 x 2 -8 8 10 -3 -12 -10 470 13. (a) The equation of the parabola is y = ax2 and it passes through (2100, 470), thus a = , 21002 470 2 x. y= 21002 2100 1+ 2 (b) L = 2 0 470 x 21002 2 dx ≈ 4336.3 ft 14. (a) As t runs from 0 to π , the upper portion of the curve is traced out from right to left; as t runs from π to 2π the bottom portion of the curve is traced out from right to left. The loop 1 1 occurs for π + sin−1 < t < 2π − sin−1 . 4 4 (b) lim x = +∞, lim y = 1; lim x = −∞, lim y = 1; lim x = +∞, lim y = 1; t→0+ t→0+ t→π − t→π − t→π + t→π + lim x = −∞, lim y = 1; the horizontal asymptote is y = 1. t→2π − t→2π − (c...
View Full Document

This document was uploaded on 02/23/2014 for the course MANAGMENT 2201 at University of Michigan.

Ask a homework question - tutors are online