# 32 f1 x y z 2x2 3y 2 z 2 f2 x y z x2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: C2 = k, r(t) = 3ti − ln(t + 1)j + 4 4 9 1 −2t 1 −e − t k. 44 2 19. If a = 0 then x (t) = y (t) = z (t) = 0, so x(t) = x1 t + x0 , y (t) = y1 t + y0 , z (t) = z1 t + z0 , the motion is along a straight line and has constant speed. 20. (a) If r is constant then so is r 2 , but then x2 + y 2 = c2 (2-space) or x2 + y 2 + z 2 = c2 (3-space), so the motion is along a circle or a sphere of radius c centered at the origin, and the velocity vector is always perpendicular to the locating vector. (b) If v is constant then by the Theorem, v(t) · a(t) = 0, so the velocity is always perpendicular to the acceleration. 21. v = 3t2 i + 2tj, a = 6ti + 2j; v = 3i + 2j and a = 6i + 2j when t = 1 so √ cos θ = (v · a)/( v a ) = 11/ 130, θ ≈ 15◦ . 22. v = et (cos t − sin t)i + et (cos t + sin t)j, a = −2et sin ti + 2et cos tj, v · a = 2e2t , v = √ a = 2et , cos θ = (v · a)/( v a ) = 1/ 2, θ = 45◦ . 23. (a) displacement = r1 − r0 = 0.7i + 2.7j − 3.4k (b) ∆r = r1 − r0 , so r0 = r1 − ∆r = −0.7i − 2.9j + 4.8k. y 24. (a) (b) distance = 50(1 − cos 2πt) 4 2 x -4 -2 2 4 -2 -4 3 25. ∆r = r(3) − r(1) = 8i + 26/3j; v = 2ti + t2 j, s = t √ √ 4 + t2 dt = (13 13 − 5 5)/3. 1 3π/2 26. ∆r = r(3π/2) − r(0) = 3i − 3j; v = 3 cos ti − 3 sin tj, s = 3dt = 9π/2. 0 √t 2e , 515 Chapter 14 27. ∆r = r(ln 3) − r(0) = 2i − 2/3j + √ √ 2 ln 3k; v = et i − e−t j + 2 k, s = ln 3 (et + e−t )dt = 8/3. 0 28. ∆r = r(π ) − r(0) = 0; v = −2 sin 2ti + 2 sin 2tj − sin 2tk, π π /2 3| sin 2t|dt = 6 v = 3| sin 2t|, s = 0 sin 2t dt = 6. 0 29. In both cases, the equation of the path in rectangular coordinates is x2 + y 2 = 4, the particles move counterclockwise around this circle; v1 = −6 sin 3ti + 6 cos 3tj and v2 = −4t sin(t2 )i + 4t cos(t2 )j so v1 = 6 and v2 = 4t. 30. Let u = 1 − t3 in r2 to get r2 (u) = (3 + 2u)i + uj + (1 − u)k so both particles move along the same √ √ line; v1 = 2i + j − k and v2 = −6t2 i − 3t2 j + 3t2 k so v1 = 6 and v2 = 3 6t2 . 31. (a) v = −e−t i + et j, a = e−t i + et j; when t = 0, v = −i + j, a = i + j, v = √ v × a = −2k so aT = 0, aN = 2. √ (c) κ = 1/ 2 (b) aT T = 0, aN N = a − aT T = i + j √ 2, v · a = 0, 32. (a) v = −2t sin(t2 )i + 2t cos(t2 )j, a = [−4t2 cos(t2 ) − 2 sin(t2 )]i + [−4t2 sin(t2 ) + 2 cos(t2 )]j; when √ √ √ √ √ √ t = π/2, v = − π /2i + π /2j, a = (−π/ 2 − 2)i + (−π/ 2 + 2)j, v = π , √ v · a = 2 π , v × a = π 3/2 k so aT = 2, aN = π √ √ (b) aT T = − 2(i − j), aN N = a − aT T = −(π/ 2)(i + j) (c) κ = 1 33. (a) v = (3t2 − 2)i + 2tj, a = 6ti + 2j; when t = 1, v = i + 2j, a = 6i + 2j, v = √ √ v × a = −10k so aT = 2 5, aN = 2 5 √ 25 (b) aT T = √ (i + 2j) = 2i + 4j, aN N = a − aT T = 4i − 2j 5 √ (c) κ = 2/ 5 √ 5, v · a = 10, √ 34. (a) v = et (− sin t+cos t)i+et (cos t+sin t)j, a = −2et sin ti+2et cos tj; when t = π/4, v = 2eπ/4 j, √ √ √ √ a = − 2eπ/4 i + 2eπ/4 j, v = 2eπ/4 , v · a = 2eπ/2 , v × a = 2eπ/2 k so aT = 2eπ/4 , √ aN = 2eπ/4 √ √ (b) aT T = 2eπ/4 j, aN N = a − aT T = − 2eπ/4 i (c) κ = √ 1 2eπ/4 35. (a) v = i + 2tj + 3t2 k, a = 2j + 6tk; when t = 1, v = i + 2j + 3k, a = 2j + 6k, v = √ √√ v · a = 22, v × a = 6i − 6j + 2k so aT = 22/ 14, aN = 76/ 14 = 38/7 (b) aT T = √ 14, 22 33 8 9 11 11 i + j + k, aN N = a − aT T = − i − j + k 7 7 7 7 7 7 √ 19 (c) κ = √ 7 14 36. (a) v = et i − 2e−2t j + k, a = et i + 4e−2t j; when t = 0, v = i − 2j + k, a = i + 4j, v = √ v · a = −7, v × a = −4i + j + 6k so aT = −7/ 6, aN = 53/6 √ 6, Exercise Set 14.6 516 19 7 7 13 i+ j+ k (b) aT T = − (i − 2j + k), aN N = a − aT T = 6 6 3 6 √ 53 (c) κ = √ 66 37. (a) v = 3 cos ti − 2 sin tj − 2 cos 2tk, a = −3 sin ti − 2 cos tj +4 sin 2tk; when t = π/2, v = −2j +2k, √ a = −3i, v = 2 2, v · a = 0, v × a = −6j − 6k so aT = 0, aN = 3 (b) aT T = 0, aN N = a = −3i (c) κ = 3 8 38. (a) v = 3t2 j − (16/t)k, a = 6tj + (16/t2 )k; when t = 1, v = 3j − 16k, a = 6j + 16k, v = √ √ v · a = −238, v × a = 144i so aT = −238/ 265, aN = 144/ 265 (b) aT T = − (c) κ = 39. 40. √ 265, 3808 432 714 2304 j+ k, aN N = a − aT T = j+ k 265 265 265 265 144 2653/2 v = 4, v · a = −12, v × a = 8k so aT = −3, aN = 2, T = −j, N = (a − aT T)/aN = i √ √ √ 5, v · a = 3, v × a = −6k so aT = 3/ 5, aN = 6/ 5, T = (1/ 5)(i + 2j), √ N = (a − aT T)/aN = (1/ 5)(2i − j) v= √ √ 41. v = 3, v · a = 4, v × a = 4i − 3j − 2k so aT = 4/3, aN = √ N = (a − aT T)/aN = (i − 8j + 14k)/(3 29) 42. v = 5, v · a = −5, v × a = −4i − 10j − 3k so aT = −1, aN = √ N = (a − aT T)/aN = (8i − 5j + 6k)/(5 5) 29/3, T = (1/3)(2i + 2j + k), √ 5, T = (1/5)(3i − 4k), 43. aT = d2 s d = dt2 dt 3t2 + 4 = 3t/ 44. aT = d2 s d = dt2 dt t2 + e−3t = (2t − 3e−3t )/[2 t2 + e−3t ] so when t = 0, aT = −3/2. 3t2 + 4 so when t = 2, aT = 3/2. d2 s d = (4t − 1)2 + cos2 πt = [4t − 1 − π cos πt sin πt]/ (4t − 1)2 + cos2 πt so when 2 dt dt √ t = 1/4, aT = −π/ 2. 45. aT = 46. aT = d2 s d = dt2 dt t4 + 5t2 + 3 = (2t3 + 5t...
View Full Document

## This document was uploaded on 02/23/2014 for the course MANAGMENT 2201 at University of Michigan.

Ask a homework question - tutors are online