4 13 g is the conical solid 2 div f dv 2 g 1 1 x

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1 1 3π = 2(10)(4) + 2(20)(2) − 2 10(2) + 20(4) − 10(20) 2 2 2 60 10π = 60 + √ 3 π dx √ = 3 + , the length of BC is increasing. dt 6 (b) d dt ∂z ∂x = ∂ ∂x ∂z ∂x ∂ dx + dt ∂y ∂z ∂x ∂ 2 z dx ∂ 2 z dy dy = + by the Chain Rule, and 2 dt dt ∂x ∂y∂x dt d dt 38. (a) ∂z ∂y = ∂ ∂x ∂z ∂y ∂ dx + dt ∂y ∂z ∂y ∂ 2 z dx ∂ 2 z dy dy = +2 dt ∂x∂y dt ∂y dt ∂z dx ∂z dy dz = + , dt ∂x dt ∂y dt dx d2 z = 2 dt dt ∂ 2 z dy ∂ 2 z dx + ∂x2 dt ∂y∂x dt + ∂z d2 x dy + ∂x dt2 dt ∂ 2 z dx ∂ 2 z dy +2 ∂x∂y dt ∂y dt + ∂z d2 y ∂y dt2 CHAPTER 16 Multiple Integrals EXERCISE SET 16.1 1 2 1. 1 (x + 3)dy dx = 0 0 4 1 4 x2 y dx dy = 2 1 2 0 0 0 5 dx dy = −1 1 0 3 dy = 3 0 π 1 1− 0 ln 2 1 0 2 1x (e − 1)dx = (1 − ln 2)/2 2 4 1 1 − x+1 x+2 0 1 dy dx = (x + y )2 12. 1 1 2 −1 −2 1 1 xy x2 + y 2 + 1 0 0 dx = 0 1 dy dx = √ √ [x(x2 + 2)1/2 − x(x2 + 1)1/2 ]dx = (3 3 − 4 2 + 1)/3 0 3 1 x 1 − x2 dy dx = 15. 0 2 x(1 − x2 )1/2 dx = 1/3 0 π /2 π /3 π /2 (x sin y − y sin x)dy dx = 16. 0 dx = ln(25/24) −1 14. 1 3 1 4xy 3 dy dx = 13. 0 10dx = 20 4 dx = 1 − ln 2 ln 2 2 xy ey x dy dx = 11. 3 −3 π/2 1 4 1 x+1 6 dy dx = (sin 2x − sin x)dx = −2 x cos xy dy dx = 0 (3 + 3y 2 )dy = 14 −2 π 2 10. π/2 7 8. 4 x dy dx = (xy + 1)2 9. −1 1 sin x dx = (1 − cos 2)/2 2 −1 2 1 −2 0 7. 0 (x2 + y 2 )dx dy = 0 y sin x dy dx = 0 2 4. ex dx = 2 0 2 4x dx = 16 1 ln 3 ex+y dy dx = 6. 0 1 y dy = 2 3 ln 2 5. 0 −1 1 3 (2x − 4y )dy dx = 6 0 ln 3 1 2. 0 3. 2 3 (2x + 6)dx = 7 0 0 5 2 5 (2x + y )dy dx = 19. V = 3 1 3 (2x + 3/2)dx = 19 3 2 3 (3x3 + 3x2 y )dy dx = 20. V = 1 0 x π2 − sin x dx = π 2 /144 2 18 (6x3 + 6x2 )dx = 172 1 573 Exercise Set 16.1 574 2 3 2 x2 dy dx = 21. V = 0 0 3 3x2 dx = 8 0 4 3 5(1 − x/3)dy dx = 22. V = 0 0 5(4 − 4x/3)dx = 30 0 z 23. (a) z (b) (0, 0, 5) (1, 0, 4) y y (2, 5, 0) (3, 4, 0) x x z 24. (a) z (b) (2, 2, 8) (0, 0, 2) y y (2, 2, 0) (1, 1, 0) x x 1/2 π 1/2 x cos(xy ) cos2 πx dy dx = 25. 0 0 cos2 πx sin(xy ) π dx 0 0 1/2 = 0 1 cos2 πx sin πx dx = − cos3 πx 3 1/2 = 0 1 3π z 26. (a) y 3 5 x (b) The projection onto the xy -plane consists of R1 : [0, 5] × [0, 1], over which lie each of the two skew planes, and R2 : [0, 5] × [1, 3], over which is only the plane z = −2y + 6, so 5 1 0 27. fave = 2 π 5 3 ((−2y + 6) − y ) dy dx + V= 0 0 π /2 1 y sin xy dy dx = 0 (−2y + 6) dy dx = 0 2 π 1 π /2 − cos xy 0 1 dx = 0 2 π 85 45 + 20 = 2 2 π /2 (1 − cos x) dx = 1 − 0 2 π 575 Chapter 16 28. average = 0 √ 1 [(1 + y )3/2 − y 3/2 ]dy = 2(31 − 9 3)/45 9 3 0 0 2 10 − 8x2 − 2y 2 dy dx = 0 0 1 A(R) 30. fave = 1 x(x2 + y )1/2 dx dy = 1 1 2 29. Tave = 3 1 3 b d 0 c 31. 0.6211310829 dx = 14 3 ◦ 32. 2.230985141 b d b f (x, y )dA = 33. 44 − 16x2 3 1 (b − a)(d − c)k = k A(R) k dy dx = a 1 1 2 g (x)h(y )dy dx = a R c h(y )dy dx a b c d g (x)dx = d g (x) h(y )dy a c 34. The integral of tan x (an odd function) over the interval [−1, 1] is zero. 35. The first integral equals 1/2, the second equals −1/2. No, because the integrand is not continuous. 16 4 4 ∗ f (x∗ , yk )∆A∗ = k k 36. (a) i=1 j =1 k=1 2 2 0 −2 1 j − 24 1 2 2 = −4 2 (x − 2y ) dy dx = (b) 1 i − 24 (2x − 4) dx = −4 0 0 EXERCISE SET 16.2 x 1 1 xy 2 dy dx = 1. x2 0 0 3−y 3/2 3/2 (3y − 2y 2 )dy = 7/24 y dx dy = 2. y 1 √ 3 1 9−y 2 3 y dx dy = 3. 0 0 x 1 9 − y 2 dy = 9 y 0 x 1 4. x/y dy dx = x2 1/4 √ 2π 5. 14 (x − x7 )dx = 1/40 3 √ x2 1/4 1 √ 0 x2 −1 −x2 2(x − x3/2 )dx = 13/80 1/4 [−x cos(x2 ) + x]dx = π/2 π (x − y )dy dx = 4 2x dx = 4/5 −1 x2 π 1 2 6. 1 √ 2π x3 sin(y/x)dy dx = π x1/2 y −1/2 dy dx = 7. π/2 0 1 cos(y/x)dy dx = x π sin x dx = 1 π/2 Exercise Set 16.2 x 1 576 1 2 0 0 (e − 1)y 2 dy = 7(e − 1)/3 x2 2 0 0 0 (y +7)/2 3 3 (3y 2 + 3y )dy = 38 xy dx dy = (b) −(y −5)/2 1 1 √ x 1 12. (a) 1 (x3/2 + x/2 − x3 − x4 /2)dx = 3/10 (x + y )dy dx = x2 √ 1−x2 0 1 (b) √ − 1−x2 −1 0 x dy dx + √ y 15. 4 x(1 + y 2 )−1/2 dx dy = √ 1−x2 √ − 1−x2 5 1 (3x − 2y )dy dx = 0 6−y 2 19. xy dx dy = y2 0 1 (36y − 12y 2 + y 3 − y 5 )dy = 50/3 2 √ 1/ 2 π /4 x dx dy = 20. sin y 0 0 x3 1 1 cos 2y dy = 1/8 4 x (x − 1)dy dx + 21. 6x 1 − x2 dx = 0 (5x − x2 )dx = 125/6 5−x π /4 −1 5 y dy dx = 18. −1 √ 1 y (1 + y 2 )−1/2 dy = ( 17 − 1)/2 2 x sin x dx = π √ 25−x2 0 x (x − 1)dy dx 0 x3 0 = −1 √ 1/ 2 1 (x4 − x3 − x2 + x)dx + 2x 22. x dy dx + x (−x4 + x3 + x2 − x)dx = −1/2 0 1 2 0 1 0 −1 0 0 14 y dy = 31/10 2 π 0 2 2 xy 2 dx dy = 1 x cos y dy dx = 0 y 14. 4 x 17. 2x 1 − x2 dx + 0 = 0 2 0 π −1 (x3 − 16x)dx = 576 0 16. 1 y dy dx = 8 16/x 1 √ − 1−x2 −1 x2 dy dx = 0 √ 1−x2 1 x 13. 0 16 15 x dx = 2 3 xy dy dx = 11. (a) 4 0 1 2 4 0 13 x dx = 1/12 3 2 2 0 8 1 x2 − y 2 dy dx = y 0 ex/y dx dy = 10. 1 9. 0 y2 2 x 1 2 xex dx = (e − 1)/2 ex dy dx = 8. √ 1/ 2 √ 1/ 2 1/x 2 x 1 x3 dx + x dy dx = 0 √ 1/ 2 (x − x3 )dx = 1/8 577 Ch...
View Full Document

Ask a homework question - tutors are online