# 6 1 a dy f xdx 2xdx 41 4 and y x x2 x2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: = cos(1/x2 ) 16. f (x) = 4 tan3 (x3 ) 17. f (x) = 4 sec(x7 ) 18. f (x) = 3 cos2 =− d3 (x ) = −3x2 csc(x3 ) cot(x3 ) dx d 2 (1/x2 ) = − 3 cos(1/x2 ) dx x d d [tan(x3 )] = 4 tan3 (x3 ) sec2 (x3 ) (x3 ) = 12x2 tan3 (x3 ) sec2 (x3 ) dx dx d d [sec(x7 )] = 4 sec(x7 ) sec(x7 ) tan(x7 ) (x7 ) = 28x6 sec2 (x7 ) tan(x7 ) dx dx x x+1 3 cos2 (x + 1)2 d cos dx x x+1 x x+1 sin = 3 cos2 x x+1 − sin x x+1 x x+1 19. f (x) = 5 sin(5x) d [cos(5x)] = − 2 cos(5x) dx 2 cos(5x) 20. f (x) = 3 − 8 sin(4x) cos(4x) d [3x − sin2 (4x)] = dx 2 3x − sin (4x) 2 3x − sin2 (4x) 1 1 2 (x + 1)(1) − x(1) (x + 1)2 Exercise Set 3.5 84 d x + csc(x3 + 3) dx f (x) = −3 x + csc(x3 + 3) −4 = −3 x + csc(x3 + 3) −4 1 − csc(x3 + 3) cot(x3 + 3) = −3 x + csc(x3 + 3) 21. −4 1 − 3x2 csc(x3 + 3) cot(x3 + 3) f (x) = −4 x4 − sec(4x2 − 2) −5 = −4 x4 − sec(4x2 − 2) 22. d x4 − sec(4x2 − 2) dx −5 = −16x x4 − sec(4x2 − 2) d3 (x + 3) dx 4x3 − sec(4x2 − 2) tan(4x2 − 2) −5 d (4x2 − 2) dx x2 − 2 sec(4x2 − 2) tan(4x2 − 2) −2x x(10 − 3x2 ) 23. f (x) = x2 · √ + 2x 5 − x2 = √ 2 5 − x2 5 − x2 √ √ 1 1 − x2 (1) − x(−x/ 1 − x2 ) = 1 − x2 (1 − x2 )3/2 24. f (x) = 25. dy d = x3 (2 sin 5x) (sin 5x) + 3x2 sin2 5x = 10x3 sin 5x cos 5x + 3x2 sin2 5x dx dx 26. √ √ √ √ √ √ √ 1 3 1 dy 1 = x 3 tan2 ( x) sec2 ( x) √ + √ tan3 ( x) = tan2 ( x) sec2 ( x) + √ tan3 ( x) dx 2 2x 2x 2x 27. dy = x5 sec dx = −x3 sec 1 x tan 1 x tan 1 x d dx 1 x 1 x + sec + 5x4 sec 1 x (5x4 ) = x5 sec 1 x tan 1 x − 1 x2 + 5x4 sec 1 x 1 x 28. sec(3x + 1) cos x − 3 sin x sec(3x + 1) tan(3x + 1) cos x − 3 sin x tan(3x + 1) dy = = 2 (3x + 1) dx sec sec(3x + 1) 29. d dy = − sin(cos x) (cos x) = − sin(cos x)(− sin x) = sin(cos x) sin x dx dx 30. d dy = cos(tan 3x) (tan 3x) = 3 sec2 3x cos(tan 3x) dx dx 31. d d dy = 3 cos2 (sin 2x) [cos(sin 2x)] = 3 cos2 (sin 2x)[− sin(sin 2x)] (sin 2x) dx dx dx = −6 cos2 (sin 2x) sin(sin 2x) cos 2x 32. (1 − cot x2 )(−2x csc x2 cot x2 ) − (1 + csc x2 )(2x csc2 x2 ) 1 + cot x2 csc x2 dy = = −2x csc x2 2 )2 dx (1 − cot x (1 − cot x2 )2 33. d d dy = (5x + 8)13 12(x3 + 7x)11 (x3 + 7x) + (x3 + 7x)12 13(5x + 8)12 (5x + 8) dx dx dx = 12(5x + 8)13 (x3 + 7x)11 (3x2 + 7) + 65(x3 + 7x)12 (5x + 8)12 34. dy = (2x − 5)2 3(x2 + 4)2 (2x) + (x2 + 4)3 2(2x − 5)(2) = 6x(2x − 5)2 (x2 + 4)2 + 4(2x − 5)(x2 + 4)3 dx = 2(2x − 5)(x2 + 4)2 (8x2 − 15x + 8) 85 Chapter 3 2 35. dy x−5 =3 dx 2x + 1 dy = 17 dx 1 + x2 1 − x2 16 36. 1 + x2 1 − x2 16 = 17 37. 38. x5 d x−5 =3 dx 2x + 1 2x + 1 1 + x2 1 − x2 d dx 41. 1 + x2 1 − x2 11 33(x − 5)2 = 2 (2x + 1) (2x + 1)4 16 (1 − x2 )(2x) − (1 + x2 )(−2x) (1 − x2 )2 dy (4x2 − 1)8 (3)(2x + 3)2 (2) − (2x + 3)3 (8)(4x2 − 1)7 (8x) = dx (4x2 − 1)16 2 2 7 2(2x + 3) (4x − 1) [3(4x2 − 1) − 32x(2x + 3)] 2(2x + 3)2 (52x2 + 96x + 3) = =− 2 − 1)16 (4x (4x2 − 1)9 dy d = 12[1 + sin3 (x5 )]11 [1 + sin3 (x5 )] dx dx d = 12[1 + sin3 (x5 )]11 3 sin2 (x5 ) sin(x5 ) = 180x4 [1 + sin3 (x5 )]11 sin2 (x5 ) cos(x5 ) dx dy = 5 x sin 2x + tan4 (x7 ) dx 4 4 = 5 x sin 2x + tan4 (x7 ) 40. · 4x 68x(1 + x2 )16 = 2 )2 (1 − x (1 − x2 )18 = 5 x sin 2x + tan4 (x7 ) 39. = 17 2 4 d x sin 2x tan4 (x7 ) dx d d x cos 2x (2x) + sin 2x + 4 tan3 (x7 ) tan(x7 ) dx dx 2x cos 2x + sin 2x + 28x6 tan3 (x7 ) sec2 (x7 ) d dy = cos(3x2 ) (3x2 ) = 6x cos(3x2 ), dx dx d d2 y = 6x(− sin(3x2 )) (3x2 ) + 6 cos(3x2 ) = −36x2 sin(3x2 ) + 6 cos(3x2 ) 2 dx dx d d dy = x(− sin(5x)) (5x) + cos(5x) − 2 sin x (sin x) dx dx dx = −5x sin(5x) + cos(5x) − 2 sin x cos x = −5x sin(5x) + cos(5x) − sin(2x), d d d d2 y = −5x cos(5x) (5x) − 5 sin(5x) − sin(5x) (5x) − cos(2x) (2x) dx2 dx dx dx = −25x cos(5x) − 10 sin(5x) − 2 cos(2x) 42. dy = x sec2 dx 2 d2 y = − sec dx2 x d dx 1 x 1 x 1 x + tan d sec dx 1 x 1 x + 1 = − sec2 x 1 sec2 x2 1 x 1 x + sec2 + tan 1 x d dx 1 , x 1 x = 2 sec2 x3 1 x tan 1 x 43. (1 − x) + (1 + x) 2 d2 y dy = = = 2(1 − x)−2 and = −2(2)(−1)(1 − x)−3 = 4(1 − x)−3 dx (1 − x)2 (1 − x)2 dx2 45. dy dy = −3x sin 3x + cos 3x; if x = π then y = −π and = −1 so y + π = −(x − π ), y = −x dx dx 46. dy dy = 3x2 cos(1 + x3 ); if x = −3 then y = sin(−26) = − sin 26 and = 27 cos 26 dx dx so y + sin 26 = 27(cos 26)(x + 3) Exercise Set 3.5 47. 48. 86 dy dy = −3 sec3 (π/2 − x) tan(π/2 − x); if x = −π/2 then y = −1 and =0 dx dx so y + 1 = (0)(x + π/2), y = −1 dy dy = 3(x − 1/x)2 (1 + 1/x2 ); if x = 2 then y = 27/8 and = 135/16 dx dx 135 135 27 27 = (x − 2), y = x− so y − 8 16 16 2 49. y = cot3 (π − θ) = − cot3 θ so dy/dx = 3 cot2 θ csc2 θ 50. 6 51. au + b cu + d 5 ad − bc (cu + d)2 d [a cos2 πω + b sin2 πω ] = −2πa cos πω sin πω + 2πb sin πω cos πω dω = π (b − a)(2 sin πω cos πω ) = π (b − a) sin 2πω 52. 2 csc2 (π/3 − y ) cot(π/3 − y ) 53. (a) (c) 2 f (x) = x √ −x + 4 − x2 4 − 2x2 4 − x2 = √ 4 −...
View Full Document

## This document was uploaded on 02/23/2014 for the course MANAGMENT 2201 at University of Michigan.

Ask a homework question - tutors are online