# 73 let r a sin n the proof for r a cos n is similar

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: m = 1/e &lt; 1, converges k→+∞ k→+∞ e(k + 1) e ln k 35. Ratio Test, ρ = lim k+1 1 = lim = 0, converges 2k+1 2k+1 k→+∞ e k→+∞ 2e 36. Ratio Test, ρ = lim 37. Ratio Test, ρ = lim k→+∞ k+5 = 1/4, converges 4(k + 1) k3 = 1, +1 k→+∞ k 3 lim √ k→+∞ k = 1, k2 + k 383 Chapter 11 38. Root Test, ρ = lim ( k→+∞ 39. diverges because lim kk 1 ) = lim = 1/e, converges k→+∞ (1 + 1/k )k k+1 k→+∞ ∞ 40. k=1 √ k ln k = 3+1 k +∞ 2 41. 42. 1 = 1/4 = 0 4 + 2−k √ k ln k ln k k ln k k ln k because ln 1 = 0, 3 &lt; = 2, 3+1 3 k k +1 k k √ ∞ k=2 ln x 1 ln x − dx = lim − →+∞ x2 x x tan−1 k π/2 &lt; 2, k2 k ∞ k=1 2 π/2 converges so k2 2 5k 5k + 5k 5k + k &lt; = , k! + 3 k! k! ∞ 1 = (ln 2 + 1) so 2 ∞ k=1 k=1 k=2 ln k converges and so does k2 ∞ k=1 √ k ln k . k3 + 1 tan−1 k converges k2 ∞ 5k k! 2 ∞ converges (Ratio Test) so k=1 5k + k converges k! + 3 (k + 1)2 = 1/4, converges k→+∞ (2k + 2)(2k + 1) 43. Ratio Test, ρ = lim 2(k + 1)2 = 1/2, converges k→+∞ (2k + 4)(2k + 3) 44. Ratio Test, ρ = lim 45. uk = k! k+1 , by the Ratio Test ρ = lim = 1/2; converges k→+∞ 2k + 1 1 · 3 · 5 · · · (2k − 1) 46. uk = 1 · 3 · 5 · · · (2k − 1) 1 , by the Ratio Test ρ = lim = 0; converges k→+∞ 2k (2k − 1)! 47. Root Test: ρ = lim k→+∞ 1 (ln k )1/k = 1/3, converges 3 k+1 π (k + 1) = π , diverges = lim π 1+1/k k→+∞ k k→+∞ k 48. Root Test: ρ = lim sin(π/k ) = 1 and 49. (b) ρ = lim k→+∞ π/k 50. (a) cos x ≈ 1 − x2 /2, 1 − cos √ ∞ π/k diverges k=1 1 k ≈ 1 2k 2 (b) ρ = lim k→+∞ 1 − cos(1/k ) = 2, converges 1/k 2 1 d 1 g (x) = √ − = 0 when x = 4. Since lim g (x) = lim g (x) = +∞ x→+∞ x→0+ dx 2x x √ √ it follows that g (x) has its minimum at x = 4, g (4) = 4 − ln 4 &gt; 0, and thus x − ln x &gt; 0 for x &gt; 0. √ ∞ ∞ ln k 1 k 1 ln k (a) &lt; 2 = 3/2 , converges so converges. k2 k k2 k k 3/2 51. Set g (x) = x − ln x; k=1 (b) 1 1 &gt;, 2 (ln k ) k ∞ k=2 1 diverges so k k=1 ∞ k=2 1 diverges. (ln k )2 Exercise Set 11.7 384 52. By the Root Test, ρ = lim k→+∞ α α = α = α, the series converges if α &lt; 1 and diverges 1 (k 1/k )α ∞ if α &gt; 1. If α = 1 then the series is 1/k which diverges. k=1 bk . Then a1 + a2 + · · · + an ≤ b1 + b2 + · · · + bn ≤ M ; 53. (a) If bk converges, then set M = apply Theorem 11.4.6 to get convergence of ak . (b) Assume the contrary, that bk converges; then use part (a) of the Theorem to show that ak converges, a contradiction. 54. (a) If lim (ak /bk ) = 0 then for k ≥ K , ak /bk &lt; 1, ak &lt; bk so k→+∞ ak converges by the Comparison Test. (b) If lim (ak /bk ) = +∞ then for k ≥ K , ak /bk &gt; 1, ak &gt; bk so k→+∞ Comparison Test. EXERCISE SET 11.7 1. ak+1 &lt; ak , lim ak = 0, ak &gt; 0 k→+∞ 2. 1 k ak+1 &lt; for k &gt; 0, so {ak } is decreasing and tends to zero. = ak 3(k + 1) 3 3. diverges because lim ak = lim k→+∞ k→+∞ k+1 = 1/3 = 0 3k + 1 k+1 4. diverges because lim ak = lim √ = +∞ = 0 k→+∞ k→+∞ k+1 5. {e−k } is decreasing and lim e−k = 0, converges k→+∞ 6. ln k k ln k = 0, converges k→+∞ k is decreasing and lim (3/5)k+1 = 3/5, converges absolutely k→+∞ (3/5)k 7. ρ = lim 8. ρ = lim k→+∞ 2 = 0, converges absolutely k+1 3k 2 = 3, diverges k→+∞ (k + 1)2 9. ρ = lim 10. ρ = lim k→+∞ k+1 = 1/5, converges absolutely 5k (k + 1)3 = 1/e, converges absolutely k→+∞ ek 3 11. ρ = lim (k + 1)k+1 k ! = lim (1 + 1/k )k = e, diverges k→+∞ (k + 1)!k k k→+∞ 12. ρ = lim ak diverges by the 385 Chapter 11 ∞ (−1)k+1 converges by the Alternating Series Test but 3k 13. conditionally convergent, k=1 ∞ 1 14. absolutely convergent, k=1 k 4/3 ∞ k=1 1 diverges 3k converges 15. divergent, lim ak = 0 k→+∞ 16. absolutely convergent, Ratio Test for absolute convergence ∞ 17. k=1 cos kπ = k ∞ k=1 (−1)k is conditionally convergent, k ∞ k=1 (−1)k converges by the Alternating Series k ∞ Test but 1/k diverges. k=1 ∞ 18. conditionally convergent, k=3 (−1)k ln k converges by the Alternating Series Test but k diverges (Limit Comparison Test with ∞ (−1)k+1 19. conditionally convergent, k=1 ∞ Alternating Series Test but k=1 ∞ 20. conditionally convergent, ∞ k=1 k=1 ∞ k=3 ln k k 1/k ). k+2 converges by the k (k + 3) k+2 diverges (Limit Comparison Test with k (k + 3) 1/k ) (−1)k+1 k 2 converges by the Alternating Series Test but k3 + 1 k2 diverges (Limit Comparison Test with 3+1 k (1/k )) ∞ sin(kπ/2) = 1 + 0 − 1 + 0 + 1 + 0 − 1 + 0 + · · ·, divergent ( lim sin(kπ/2) does not exist) 21. k→+∞ k=1 ∞ 22. absolutely convergent, k=1 | sin k | converges (compare with k3 ∞ 23. conditionally convergent, k=2 1/k 3 ) (−1)k converges by the Alternating Series Test but k ln k ∞ k=2 1 diverges k ln k (Integral Test) ∞ 24. conditionally convergent, ∞ k=1 k=1 1 k (k + 1) (−1)k k (k + 1) converges by the Alternating Series Test but dive...
View Full Document

Ask a homework question - tutors are online