# Line blocks 8 line 1 2 3 4 5 blocks all blocks none 2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2 dy = (27 − 5 5)/12 0 41. ∂ r/∂u = cos v i + sin v j + 2uk, ∂ r/∂v = −u sin v i + u cos v j, √ ∂ r/∂u × ∂ r/∂v = u 4u2 + 1; S = 2π 2 u 0 √ √ 4u2 + 1 du dv = (17 17 − 5 5)π/6 1 42. ∂ r/∂u = cos v i + sin v j + k, ∂ r/∂v = −u sin v i + u cos v j, √ π /2 2v √ √ 23 π 2 u du dv = ∂ r/∂u × ∂ r/∂v = 2u; S = 12 0 0 √ 5/6 585 Chapter 16 2 2 43. zx = y , zy = x, zx + zy + 1 = x2 + y 2 + 1, π /6 r2 + 1 dr dθ = r 0 R √ 1 (10 10 − 1) 3 3 x2 + y 2 + 1 dA = S= 0 π /6 √ dθ = (10 10 − 1)π/18 0 2 2 44. zx = x, zy = y , zx + zy + 1 = x2 + y 2 + 1, √ 8 2π x2 S= + y2 + 1 dA = r2 + 1 dr dθ = r 0 R 0 26 3 2π dθ = 52π/3 0 2 2 45. On the sphere, zx = −x/z and zy = −y/z so zx + zy + 1 = (x2 + y 2 + z 2 )/z 2 = 16/(16 − x2 − y 2 ); the planes z = 1 and z = 2 intersect the sphere along the circles x2 + y 2 = 15 and x2 + y 2 = 12; S= 16 − x2 − y 2 R √ 15 2π 4 dA = √ 12 0 √ 4r dr dθ = 4 16 − r2 2π dθ = 8π 0 2 2 46. On the sphere, zx = −x/z and zy = −y/z so zx + zy + 1 = (x2 + y 2 + z 2 )/z 2 = 8/(8 − x2 − y 2 ); the cone cuts the sphere in the circle x2 + y 2 = 4; √ 2π 2 2π √ √ 2 2r √ S= dr dθ = (8 − 4 2) dθ = 8(2 − 2)π 2 8−r 0 0 0 47. r(u, v ) = a cos u sin v i + a sin u sin v j + a cos v k, ru × rv = a2 sin v, π 2π π a2 sin v du dv = 2πa2 S= 0 0 sin v dv = 4πa2 0 h 2π 48. r = r cos ui + r sin uj + v k, ru × rv = r; S = r du dv = 2πrh 0 49. zx = h a x 2π S= 0 , zy = h a y 0 2 2 , zx + zy + 1 = x2 + y 2 x2 + y 2 √ a 1 a2 + h2 r dr dθ = a a2 + h2 a 2 0 h2 x2 + h2 y 2 + 1 = (a2 + h2 )/a2 , a2 (x2 + y 2 ) 2π dθ = πa a2 + h2 0 50. Revolving a point (a0 , 0, b0 ) of the xz -plane around the z -axis generates a circle, an equation of which is r = a0 cos ui + a0 sin uj + b0 k, 0 ≤ u ≤ 2π . A point on the circle (x − a)2 + z 2 = b2 which generates the torus can be written r = (a + b cos v )i + b sin v k, 0 ≤ v ≤ 2π . Set a0 = a + b cos v and b0 = a + b sin v and use the ﬁrst result: any point on the torus can thus be written in the form r = (a + b cos v ) cos ui + (a + b cos v ) sin uj + b sin v k, which yields the result. 51. ∂ r/∂u = −(a + b cos v ) sin ui + (a + b cos v ) cos uj, ∂ r/∂v = −b sin v cos ui − b sin v sin uj + b cos v k, ∂ r/∂u × ∂ r/∂v = b(a + b cos v ); 2π 2π b(a + b cos v )du dv = 4π 2 ab S= 0 52. 0 ru × rv = √ u2 + 1; S = 4π 5 5 u2 + 1 du dv = 4π 0 0 u2 + 1 du = 174.7199011 0 53. z = −1 when v ≈ 0.27955, z = 1 when v ≈ 2.86204, ru × rv = | cos v |; 2π 2.86204 | cos v | dv du ≈ 9.099 S= 0 0.27955 Exercise Set 16.5 586 54. (a) x = v cos u, y = v sin u, z = f (v ), for example x = v cos u, y = v sin u, z = 1/v 2 (b) z (c) x y 55. (x/a)2 + (y/b)2 + (z/c)2 = cos2 v (cos2 u + sin2 u) + sin2 v = 1, ellipsoid 56. (x/a)2 + (y/b)2 − (z/c)2 = cos2 u cosh2 v + sin2 u cosh2 v − sinh2 v = 1, hyperboloid of one sheet 57. (x/a)2 + (y/b)2 − (z/c)2 = sinh2 v + cosh2 v (sinh2 u − cosh2 u) = −1, hyperboloid of two sheets EXERCISE SET 16.5 1 2 1 1 2 (x2 + y 2 + z 2 )dx dy dz = 1. −1 0 −1 0 1/2 π π zx sin xy dz dy dx = 1/3 0 0 2 y2 1/3 z −1 0 π /4 −1 2 −1 0 0 π /4 0 x3 cos y dx dy = 0 0 0 √ 9−z 2 3 x 0 0 √ 9−z 2 3 xy dy dx dz = 5. 0 0 x2 3 0 ln z 0 3 0 x 1 0 √ 4−x2 2 1 3−x2 −y 2 √ 4−x2 2 x dz dy dx = 2 0 √ 3y 2 8. 1 z 0 y dx dy dz = 2 + y2 x 2 1 1 1 (1 − cos πx)dx = + 2 12 √ 1 cos y dy = 2/8 4 1 (81 − 18z 2 + z 4 )dz = 81/5 8 15 33 x − x + x2 dx = 118/3 2 2 [2x(4 − x2 ) − 2xy 2 ]dy dx 0 0 = 2 0 3 x −5+x2 +y 2 0 0 3 (xz − x)dz dx = 1 7. 13 x dx dz = 2 x2 xey dy dz dx = 6. 1/3 π /4 1 x cos y dz dx dy = 1/2 47 17 15 1 y + y − y dy = 3 2 6 3 (yz 2 + yz )dz dy = x2 1 4. 1 x sin xy dy dx = 2 y2 2 yz dx dz dy = 3. 0 (10/3 + 2z 2 )dz = 8 −1 0 1/2 1 2. 1 (1/3 + y 2 + z 2 )dy dz = 2 z 4 x(4 − x2 )3/2 dx = 128/15 3 π dy dz = 3 2 1 π (2 − z )dz = π/6 3 √ 3−2 4π 587 Chapter 16 π π /6 1 π 9. 0 0 x[1 − cos(πy/6)]dy dx = 0 0 1−x2 1 y 0 1−x2 1 −1 0 −1 0 √ 2 1 11. −1 0 √ 2 2−x2 x x xyz dz dy dx = 0 0 0 π /2 0 π /2 0 xy π/6 y π /2 √ √ 1−x2 1 1−x2 −y 2 14. 8 0 0 e−x 2 √ 2 0 π /2 π /2 y sin x dx dy = π/6 0 1 (1 − x2 )3 dx = 32/105 3 1 xy (2 − x2 )2 dy dx = 2 cos(z/y )dz dx dy = 12. −y 2 −z 2 (1 − 3/π )x dx = π (π − 3)/2 0 y 2 dy dx = y dz dy dx = 10. π 1 xy sin yz dz dy dx = y 13 x (2 − x2 )2 dx = 1/6 4 √ y cos y dy = (5π − 6 3)/12 π/6 dz dy dx ≈ 2.381 0 (4−x)/2 4 (12−3x−6y )/4 (4−x)/2 4 dz dy dx = 15. V = 0 0 4 = 0 0 0 0 1 (12 − 3x − 6y )dy dx 4 3 (4 − x)2 dx = 4 16 √ y 1−x 1 1−x 1 dz dy dx = 16. V = 0 0 0 2 0 0 4−y 4 x2 0 2 0 √ y 1 4 1−y 2 1 8 − 4x2 + x4 dx = 256/15 2 0 y 1 0 0 2 x2 1 1 − y 2 dx dy = dz dx dy = 0 2 (1 − x)3/2 dx = 4/15 3 (4 − y )dy dx = 2 0 18. V = 1 y dy dx = 0 dz dy dx = 2 17. V = 2 √ 0 0 1 − y 2 dy = 1/3 y 0 19. The projection of the curve of intersection onto the...
View Full Document

## This document was uploaded on 02/23/2014 for the course MANAGMENT 2201 at University of Michigan.

Ask a homework question - tutors are online