# F 1 2 3 level curve 4x 2y 3 3 2x y 0 f x y

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ure of II. 34. (a) II takes the value zero at x = 0, yet the curvature of I is large there; hence I is the curvature of II. (b) I has constant zero curvature; II has constant, positive curvature; hence I is the curvature of II. 35. (a) 0 0 1 (b) 1 5 0 5 0 Exercise Set 14.5 508 4 36. (a) 4 (b) -1 1 -1 1 -4 -4 |12x2 − 4| 37. (a) κ = (1 + (4x3 − y (b) 3/2 4x)2 ) 8 k f(x) x -2 2 (c) f (x) = 4x3 − 4x = 0 at x = 0, ±1, f (x) = 12x2 − 4, so extrema at x = 0, ±1, and ρ = 1/4 for x = 0 and ρ = 1/8 when x = ±1. y 38. (a) (c) κ(t) = 30 t2 + 2 (t2 + 1)3/2 (d) lim κ(t) = 0 t→+∞ x -30 30 -30 −r sin θ + cos θ 39. r (θ) = r (θ) = dr dθ −r cos θ − 2 sin θ r2 + 2 dr dθ 2 κ= r2 + dr dθ −r i + r cos θ + sin θ d2 r dr + cos θ 2 dθ dθ dr dθ j; i + −r sin θ + 2 cos θ j; d2 r dθ2 2 3/2 . 40. Let r = a be the circle, so that dr/dθ = 0, and κ(θ) = 3 3 , κ(π/2) = √ 41. κ(θ) = √ 1/2 2 2(1 + cos θ) 22 43. κ(θ) = d2 r dr + sin θ 2 dθ dθ 10 + 8 cos2 3θ 2 , κ(0) = 2 θ )3/2 3 (1 + 8 cos 1 1 = r a 42. κ(θ) = √ 44. κ(θ) = 1 1 , κ(1) = √ 2θ 5e 5e2 θ2 + 2 3 , κ(1) = √ 2 + 1)3/2 (θ 22 509 Chapter 14 45. The radius of curvature is zero when θ = π , so there is a cusp there. 46. d2 r 3 dr = − sin θ, 2 = − cos θ, κ(θ) = 3/2 √ dθ dθ 2 1 + cos θ 47. Let y = t, then x = 1/|2p| t2 and κ(t) = 2 ; 4p [t /(4p2 ) + 1]3/2 t = 0 when (x, y ) = (0, 0) so κ(0) = 1/|2p|, ρ = 2|p|. ex (1 − 2e2x ) ex , κ (x) = ; κ (x) = 0 when e2x = 1/2, x = −(ln 2)/2. By the ﬁrst 2x )3/2 (1 + e (1 + e2x )5/2 √ 1 1 derivative test, κ(− ln 2) is maximum so the point is (− ln 2, 1/ 2). 2 2 48. κ(x) = 49. Let x = 3 cos t, y = 2 sin t for 0 ≤ t &lt; 2π , κ(t) = 6 so (9 sin t + 4 cos2 t)3/2 2 1 1 (9 sin2 t + 4 cos2 t)3/2 = (5 sin2 t + 4)3/2 which, by inspection, is minimum when 6 6 t = 0 or π . The radius of curvature is minimum at (3, 0) and (−3, 0). ρ(t) = 6(1 − 45x4 ) 6x for x &gt; 0, κ (x) = ; κ (x) = 0 when x = 45−1/4 which, by the 4 )3/2 (1 + 9x (1 + 9x4 )5/2 ﬁrst derivative test, yields the maximum. 50. κ(x) = 51. r (t) = − sin ti + cos tj − sin tk, r (t) = − cos ti − sin tj − cos tk, √ √ r (t) × r (t) = − i + k = 2, r (t) = (1 + sin2 t)1/2 ; κ(t) = 2/(1 + sin2 t)3/2 , √ √ ρ(t) = (1 + sin2 t)3/2 / 2. The minimum value of ρ is 1/ 2; the maximum value is 2. √ 52. r (t) = et i − e−t j + 2k, r (t) = et i + e−t j; √ √ √ 1 2 , ρ(t) = √ (et + e−t )2 = 2 2 cosh2 t. The minimum value of ρ is 2 2. κ(t) = 2t −2t + 2 e +e 2 53. From Exercise 39: dr/dθ = aeaθ = ar, d2 r/dθ2 = a2 eaθ = a2 r; κ = 1/[ 1 + a2 r]. 54. Use implicit diﬀerentiation on r2 = a2 cos 2θ to get 2r again to get r dr dθ r2 + 2 r2 + dr dθ d2 r + dθ2 2 −r dr dθ 2 = −2a2 cos 2θ so r d2 r = 3 r2 + dθ2 2 = r2 + dr dθ d2 r =− dθ2 2 ,κ= [r2 dr dr = −2a2 sin 2θ, r = −a2 sin 2θ, and dθ dθ dr dθ 2 − 2a2 cos 2θ = − dr dθ 2 − 2r2 , thus a2 sin 2θ dr 3 =− so ; 2 ]1/2 dθ r + (dr/dθ) a4 sin2 2θ r4 + a4 sin2 2θ a4 cos2 2θ + a4 sin2 2θ a4 3r = = = 2 , hence κ = 2 . r2 r2 r2 r a Exercise Set 14.5 510 55. (a) d2 y/dx2 = 2, κ(φ) = |2 cos3 φ| √ √ (b) dy/dx = tan φ = 1, φ = π/4, κ(π/4) = |2 cos3 (π/4)| = 1/ 2, ρ = 2 y (c) 3 x -2 56. (a) 1 5 5 , 0 , 0, − 3 2 (b) clockwise (c) it is a point, namely the center of the circle 57. κ = 0 along y = 0; along y = x2 , κ(x) = 2/(1 + 4x2 )3/2 , κ(0) = 2. Along y = x3 , κ(x) = 6|x|/(1 + 9x4 )3/2 , κ(0) = 0. y 58. (a) (b) For y = x2 , κ(x) = 2 (1 + 4x2 )3/2 4 so κ(0) = 2; for y = x4 , κ(x) = x -2 12x2 so κ(0) = 0. (1 + 16x6 )3/2 κ is not continuous at x = 0. 2 59. κ = 1/r along the circle; along y = ax2 , κ(x) = 2a/(1 + 4a2 x2 )3/2 , κ(0) = 2a so 2a = 1/r, a = 1/(2r). |y | so the transition will be smooth if the values of y are equal, the values of y (1 + y 2 )3/2 are equal, and the values of y are equal at x = 0. If y = ex , then y = y = ex ; if y = ax2 + bx + c, then y = 2ax + b and y = 2a. Equate y , y , and y at x = 0 to get c = 1, b = 1, and a = 1/2. 60. κ(x) = 61. The result follows from the deﬁnitions N = T (s) and κ = T (s) . T (s) dB dB = 0 because B(s) = 1 so is perpendicular to B(s). ds ds dB dT dB dT + · T(s) = 0, but = κN(s) so κB(s) · N(s) + · (b) B(s) · T(s) = 0, B(s) · ds ds ds ds dB dB · T(s) = 0 because B(s) · N(s) = 0; thus is perpendicular to T(s). T(s) = 0, ds ds dB dB is perpendicular to both B(s) and T(s) but so is N(s), thus is parallel to N(s) and (c) ds ds hence a scalar multiple of N(s). 62. (a) B · (d) If C lies in a plane, then T(s) and N(s) also lie in the plane; B(s) = T(s) × N(s) so B(s) is always perpendicular to the plane and hence dB/ds = 0, thus τ = 0. 511 63. Chapter 14 dT dB dN = B× + × T = B × (κN) + (−τ N) × T = κB × N − τ N × T, but B × N = −T and ds ds ds dN = −κT + τ B N × T = −B so ds 64. r (s) = dT/ds = κN so r (s) = κdN/ds + (dκ/ds)N but dN/ds = −κT + τ B so r (s) = −κ2 T + (dκ/ds)N + κτ B, r (s) × r (s) = T × (κN) = κT × N = κB, [r (s) × r (s)] · r (s) = −κ3 B · T + κ(dκ/ds)B · N + κ2 τ B · B = κ2 τ , τ = [r (s) × r (s)] · r (s)/κ2 = [r (s) × r (s)] · r (s)/ r (s) 2 and B = T × N = [r (s) × r (s)]/ r (s) 65. r = a cos(s/w)i + a sin(s/w)j + (cs/w)k, r = −(a/w) sin(s/w)i + (a/w) cos(s/w)j + (c/w)k, r = −(a/w2 ) cos(s/w)i − (a/w2 ) sin(s/w)j, r = (a/w3 ) sin(s/w)i − (a/w3 ) cos(s/w)j,...
View Full Document

Ask a homework question - tutors are online