# X 2 tan dx 2 sec2 d 1 1 d 2 sec 8 1 8 6 x cos2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: then x = tanh y = 1 + x = e2y (1 − x), e2y 59. (a) (b) √ d 1 + x/ x2 − 1 −1 √ (cosh x) = = 1/ x2 − 1 dx x + x2 − 1 d 1 d1 (tanh−1 x) = (ln(1 + x) − ln(1 − x)) = dx dx 2 2 1 1 + 1+x 1−x = 1/(1 − x2 ) 287 Chapter 8 60. Let y = sech−1 x then x = sech y = 1/ cosh y , cosh y = 1/x, y = cosh−1 (1/x); the proofs for the remaining two are similar. du = tanh−1 u + C . 1 − u2 61. If |u| < 1 then, by Theorem 8.8.6, du = coth−1 u + C = tanh−1 (1/u) + C . 1 − u2 For |u| > 1, 62. (a) √ d 1 1 d x √ =− √ (sech−1 |x|) = (sech−1 x2 ) = − √ √ dx dx x 1 − x2 x2 1 − x2 x2 (b) Similar to solution of part (a) 1x (e − e−x ) = +∞ − 0 = +∞ 2 1x (b) lim sinh x = lim (e − e−x ) = 0 − ∞ = −∞ x→−∞ x→−∞ 2 ex − e−x =1 (c) lim tanh x = lim x x→+∞ x→+∞ e + e−x ex − e−x = −1 (d) lim tanh x = lim x x→−∞ x→−∞ e + e−x 63. (a) (e) (f ) lim sinh x = lim x→+∞ x→+∞ lim sinh−1 x = lim ln(x + x→+∞ x2 + 1) = +∞ x→+∞ lim tanh−1 x = lim x→1− x→1− 1 [ln(1 + x) − ln(1 − x)] = +∞ 2 lim (cosh−1 x − ln x) = lim [ln(x + x2 − 1) − ln x] √ x + x2 − 1 = lim ln(1 + = lim ln x→+∞ x→+∞ x x −x cosh x e +e 1 (1 + e−2x ) = 1/2 = lim = lim (b) lim x→+∞ x→+∞ x→+∞ 2 ex 2ex 64. (a) x→+∞ x→+∞ 1 − 1/x2 ) = ln 2 65. For |x| < 1, y = tanh−1 x is deﬁned and dy/dx = 1/(1 − x2 ) > 0; y = 2x/(1 − x2 )2 changes sign at x = 0, so there is a point of inﬂection there. √ 66. Let x = −u, 1 u2 −1 du = − − cosh−1 (−u) = − ln(−u + = ln(−u − √ 1 x2 −1 u2 − 1) = ln dx = − cosh−1 x + C = − cosh−1 (−u) + C . −u + u2 − 1) = ln |u + 1 √ u2 − 1 u2 − 1| 67. Using sinh x + cosh x = ex (Exercise 56a), (sinh x + cosh x)n = (ex )n = enx = sinh nx + cosh nx. a etx dx = 68. −a 1 tx e t a = −a 1 at 2 sinh at (e − e−at ) = for t = 0. t t 69. (a) y = sinh(x/a), 1 + (y )2 = 1 + sinh2 (x/a) = cosh2 (x/a) b b cosh(x/a) dx = 2a sinh(x/a) L=2 0 = 2a sinh(b/a) 0 (b) The highest point is at x = b, the lowest at x = 0, so S = a cosh(b/a) − a cosh(0) = a cosh(b/a) − a. Chapter 8 Supplementary Exercises 288 70. From part (a) of Exercise 69, L = 2a sinh(b/a) so 120 = 2a sinh(50/a), a sinh(50/a) = 60. Let u = 50/a, then a = 50/u so (50/u) sinh u = 60, sinh u = 1.2u. If f (u) = sinh u − 1.2u, then sinh un − 1.2un ; u1 = 1, . . . , u5 = u6 = 1.064868548 ≈ 50/a so a ≈ 46.95415231. un+1 = un − cosh un − 1.2 From part (b), S = a cosh(b/a) − a ≈ 46.95415231[cosh(1.064868548) − 1] ≈ 29.2 ft. 71. From part (b) of Exercise 69, S = a cosh(b/a) − a so 30 = a cosh(200/a) − a. Let u = 200/a, then a = 200/u so 30 = (200/u)[cosh u − 1], cosh u − 1 = 0.15u. If f (u) = cosh u − 0.15u − 1, cosh un − 0.15un − 1 ; u1 = 0.3, . . . , u4 = u5 = 0.297792782 ≈ 200/a so then un+1 = un − sinh un − 0.15 a ≈ 671.6079505. From part (a), L = 2a sinh(b/a) ≈ 2(671.6079505) sinh(0.297792782) ≈ 405.9 ft. 72. (a) When the bow of the boat is at the point (x, y ) and the person has walked a distance D, then the person is located at the point (0, D), the line segment connecting (0, D) and (x, y ) √ has length a; thus a2 = x2 + (D − y )2 , D = y + a2 − x2 = a sech−1 (x/a). 1 + 5/9 2/3 (b) Find D when a = 15, x = 10: D = 15 sech−1 (10/15) = 15 ln 1 x 1 a2 a2 +√ =√ − +x =− (c) dy/dx = − √ 2 − x2 2 − x2 2 − x2 x x xa a a 1 + [y ]2 = 1 + a2 − x2 a2 = 2 ; with a = 15 and x = 5, L = 2 x x 15 5 ≈ 14.44 m. a2 − x2 , 225 225 dx = − x2 x 15 = 30 m. 5 CHAPTER 8 SUPPLEMENTARY EXERCISES 2 2 (2 + x − x2 ) dx 6. (a) A = (b) A = 0 √ 4 y dy + 0 √ [( y − (y − 2)] dy 2 2 [(2 + x)2 − x4 ] dx (c) V = π 0 2 (d) V = 2π √ y y dy + 2π 0 √ y [ y − (y − 2)] dy 4 2 2 2 x(2 + x − x2 ) dx (e) V = 2π (f ) V = π 0 c (f (x) − g (x)) dx + a 0 −1 (f (x) − g (x)) dx c 1 (x3 − x) dx + 2 (x − x3 ) dx + 0 (x3 − x) dx = 1 11 119 ++= 444 4 8/27 2 2πx 1 + x−4/3 dx 8. (a) S = 2 d (g (x) − f (x)) dx + b (b) A = π (y − (y − 2)2 ) dy 0 b 7. (a) A = 4 y dy + (b) S = 0 2π 0 y3 27 1 + y 4 /81 dy 2 2π (y + 2) 1 + y 4 /81 dy (c) S = 0 9. By implicit diﬀerentiation −a/8 L= −a dy y =− dx x a1/3 dx = −a1/3 (−x1/3 ) −a/8 −a 1/3 , so 1 + dy dx x−1/3 dx = 9a/8. 2 =1+ y x 2/3 = x2/3 + y 2/3 a2/3 = 2/3 , 2/3 x x 289 Chapter 8 10. The base of the dome is a hexagon of side r. An equation of the circle of radius r that lies in a vertical x-y plane and passes through two opposite vertices of the base hexagon is x2 + y 2 = r2 . A horizontal, hexagonal cross section at height y above the base has area √ √ √ r √ 332 332 332 2 x= (r − y ), hence the volume is V = (r − y 2 ) dy = 3r3 . A(y ) = 2 2 2 0 11. Let the sphere have radius R, the hole radius r. By the Pythagorean Theorem, r2 + (L/2)2 = R2 . Use cylindrical shells to √ calculate the volume of the solid obtained by rotating about the y -axis √ the region r < x < R, − R2 − x2 < y < R2 − x2 : R (2πx)2 V= r 4 R2 − x2 dx = − π (R2 − x2 )3/2 3 R = r 4 π (L/2)3 , 3 so the volume is independent of R. L/2 12. V = 2 π 0 16R2 2 4π LR2 (x − L2 /4)2 = L4 15 13. Set a = 68.7672, b = 0.0100333,...
View Full Document

Ask a homework question - tutors are online