Bekki George Lecture notes 14

2 3 4 5 6 examples

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x − b) n =0 n n ''converges:' ' 1.' ' 2.' ' 3.' ' 4.' ' 5.' ' 6.''' ' # ' Examples:' 1.''Find'the'radius'and'interval'of'convergence'for' ∑ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' (− 1)n n xn ' 2.''Find'the'radius'and'interval'of'convergence'for' ∑ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 3.'Find'the'radius'and'interval'of'convergence'for' ∑ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ( −1) k k +1 ( −1) ( x − 1) k k ⋅ 2 +1 k k ' ( x + 1) k ' ' LecPop14_2 ' ∞ 3. Give'the'radius'of'convergence'for' ∑ x n n !' n=0 ' a. 1 b. 2 c. ½ ' 4. Find the interval of convergence. a) ' ' + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + b) c) e. ∞' d. 0 d) e) ' 11.8++Differentiation+and+Integration+of+Power+Series' ' ∞ Expand' ∑ a n x n ' n =0 ' ' Now,'what'happens'when'we'take'the'derivative'of'this?' ' ' ' ' ' ' ∞ ∞ d Thm'–'If' ∑ a n x n converges on (-c, c) then ∑ a n x n converges on (-c, c) n =0 n = 0 dx (you still must check the endpoints for each problem) ( Example: Show that d sin x = cos x using their power functions dx ) Integration of Series: ∞ ∞ a n n +1 x converges on n =0 n + 1 Thm – If f ( x) = ∑ a n x n converges on (-c, c), then g ( x) = ∑ n =0 (-c, c) and ∫ f ( x)dx = g ( x) + C ' ' More'examples:' 1.''Find'a'power'series'for tan −1 x using'integration.' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 2.''Given' f ( x) = x cos x 2 ,'find' f 9 ( 0 ) .' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 3.''Expand ln(cos( x)) in powers of x. ' LecPop14_2 d ∞ xk 5. Find ∑ dx k =0 k + 1 a. b. c. kx k −1 ∑ ( k + 1) k =0 ∞ ∞ kx k ∑ ( k + 1) k =0 ∞ xk ∑ k ( k + 1) k =0 x k +1 ∑ ( k + 1)2 k =0 e. none of these ∞ d....
View Full Document

This note was uploaded on 02/25/2014 for the course MATH 1432 taught by Professor Morgan during the Spring '08 term at University of Houston.

Ask a homework question - tutors are online