Section7.3-Trigonometric+Substitution

# 3cos 3cos d 2 x sin 2 whatis 2 a 3 x 3sin

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: e substitution: dx x x 5sec dx 5 tan sec d x θ 1 25sec 25 2 5 tan sec d 5 tan sec 25 sec 2 1 A) x 3sin , d x 5 tan ln sec tan C ln 5 tan sec d 5 tan dx 9 tan sec d D) x 3sec , x x 2 25 C 5 5 dx 3sec 2 d C) x 9sec , x 2 25 5 dx 3cos d B) x 3 tan , 5 sec x 9 x 2 25 dx 3 tan sec d ln x x 2 25 ln 5 C sec d ln x x 2 25 C ln sec tan C Quiz Quiz Using the substitution, , x 3sec , dx 3 tan sec d x dx x 9 2 2 9sec A) x 1 1 cos d sin C 2 9 9 x 9 2 d x2 9 C x A) 1 9 cos d 11 C 3x C) 2 1 9 B) tan d B) 27 sec 2 tan C) dx 1 9 x x 9 2 Example 1 0 Example ‐ continued x 3 x 2 4dx 32 tan x 2 tan First, find antiderivative: x 3 32 tan x 2 4dx 8 tan 8 tan 3 3 4 tan 2 4 2sec2 d 4 tan 1 2sec d 2 2 2 8 tan 2 sec 2sec d 3 3 x sec3 d u sec du sec tan d dx 2sec 2 d C x 2 4dx 32 u 4 u 2 du 3 x x tan u sec 2 _________________ 0 sec tan sec d 2 32 u 4 1 2 4 1 1 5 5 5 5 32 3 3 5 1 2 2 2 32 sec 1 sec tan sec d 32 u 0 1 2 3 55 5 11 32 5 3 2 5 2 3 5 3 1 u 2 du u 2 du 1 0 5 2 5 x3 x 2 4dx 2 32 u 4 u 2 du 1 64 5 5 15 3 64 25 5 15 5 u5 u3 2 32 5 3 1 1 0 x3 x 2 4dx 64 25 5 15 2 9/3/2013 Try 1 9 x 2 dx Try 2 1 dx x2 x2 4 3...
View Full Document

## This note was uploaded on 02/24/2014 for the course APMA 1110 taught by Professor Morris during the Fall '11 term at UVA.

Ask a homework question - tutors are online