1 09 erfx 08 07 inverse is important in some

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ion is monotonically decreasing, hence invertible. 1 0.9 erf(x) 0.8 0.7 • Inverse is important in some applications (signal detection). 0.6 Erfc: complementary error function ⁄ 0.5 0.4 erfc(x) 0.3 0.2 0.1 0 27 x 0 0.5 1 1.5 2 2.5 3 28 Erf and Gaussian Density Relation to Normal Distribution / Probability Less than Upper Bound is 0.9452 0.8 / 0.7 0.6 Normal Distribution: mean zero, variance 0.5 N Density 0.5 ⁄ 0.4 0.3 0.2 2. 0.1 0 -2 -1.5 -1 -0.5 0 0.5 Critical Value 1 1.5 x ⁄( × . ) For negative 2 3. use 29 MATLAB: Computing Probabilities (similar for Maple) 30 Example: Test Scores • Test scores are normally distributed with N >> erf(x) % Error function >> erfc(x) % Complementary error function >> 0.5*(1+erf(x/sqrt(2)) ) % St. Normal P (t < x) >> 0.5*erfc(x/sqrt(2)) % St. Normal P (t > x) >> Qinv=sqrt(2)*erfinv(1-2*P) % Inverse Q(P) 31 >> fun = @(x) exp(-(x-83).^2/128)./sqrt(128*pi); >> integral(fun,83-16,83+16) % within 2 sigma ans = 0.9545 32 Impulsive pdf Pseudorandom Number Generators f(y) >> rand % Uniform distribution over [0,1] >> randn % Standard normal Shifti...
View Full Document

This document was uploaded on 02/23/2014 for the course EE 782 at University of Nevada, Reno.

Ask a homework question - tutors are online