A surf ace a 7 object b surface b th the surf utio a f

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: b )2 ¯ ,¯ ,¯ ¯ hb (z, zb ) = √ exp − hb (z, zb ) = √ exp − ,¯ , hb (z, zb ) = √ exp − hb (z, zb ) = √ exp − 2 2 2 2 2σb 2σb σb 2π σb 2π 2σb 2σb σb 2π σb 2π 1 2 Surface b Surface b zb Surf ace a Surf ace a (7) Object B Surface b th the surf utio a f h d Surface b th the surf utio a f h d the distribution of the distance between e distribacesnhob (tz)eis istance between e distribacesnhob (tz)eis istance between e distribacesnhob (tz)eis istance between the surfaces hab (z) is th the surf utio a f h d ¯¯ hab (z, za + zb ) = 0 za Roughness of Surface A (z − za )2 ¯ 1 ¯ h (z, z ) = √ exp − h (z,n¯d ) = √ exp − az and Figure 8. Gaussian distribution of surfaceFieigre s.. Gaussian distribuaion ofasurfaceFie2πe s.. Gaussian σi2 tribuaion ofasurfaceFie2πe s.. Gaussian σi2 tribhai(z,o¯ asu=ace heights.xp − h gu ht 8 t gh 2 das 2 das ut on z ) rf σ √2π e t gh f σa hgiur t 8 σa hgiur t 8 Object A zb 1 0 2 2π σa2 + σb za (z − (za + zb ))2 zb 1 ¯¯ (z − (za + zb ))2 zb 1 ¯¯ 1 (z − (za + zb ))2 ¯¯ (z − (za + zb ))2 ¯¯ . . exp hab (z, za +2zb ) = −¯¯2 exp hab (z, za +2zb ) = −¯¯2 . . exp hab (z, za +2zb ) = −¯¯2 exp − 0 0 2 2 σa + σb 2 σa + σb 2 2 σa + σb 2 σa2 + σb 2 2π σa2 + σb 2π σ 2 + σ 2 2π σa2 + σb za za a b (8) (8) (8) (8) Surf ace a Surf ace a For the special case in which za + zbF= the the equilibrium which za + zbF= the the equilibrium which za + zbF= the the equilibrium which za + zb = d0 , the equilibrium ¯ ¯ ¯ or d0 , special case in ¯ or d0 , special case in ¯ ¯ ¯ or d0 , special case in ¯ distance, we will call the distance distribsttioce, unction hd0 (zh.e distance distribsttioce, unction hd0 (zh.e distance distribsttioce, unction hd0 (zh.e distance distribution function hd0 (z). di uan n f we will call t) di uan n f we will call t) di uan n f we will call t) Figure 9. Modeling of surface roughnessesiand e quiMbrduling of surface roughncosesientreeqGiaibrduainapprsurimatrougihncosesrentreeeGiMbrduainapprsurimatrougihncosesrentheeGiandsuan approximationOf rathese,rtheeGandsian approximation is rather crude, and F gur e 9. li o i em Of es uFs a,udhe 9u Mo si l n g of oxface ionOfres hFs a,udhdq,. ano si l n g of oxface ionOfres hes a,rd dq, a ibsri i m rg s atue ig ru e 9u li d i em rc us s atur c u e u lu . lus i em is cour r c ud , us distance. distance. becomes ledistasefe. l when the forces beeween s hedsstrfnece.s wrhen the forces beeween s hessuufacus wrhen the forces beeween s hessuufacus wrhen the forces between the surfaces are ss u nc u b tcome t l si uusacful a e sa e b tcome t le s rsefe l a e b tcome t l s rsefe l a e very weak, because of the deviations from tweak, bdistributiothe deviations from tweak, bdistributiothe deviations from tweak, bdistributiothe deviations from the real distribution very he real ecause of n very he real ecause of n very he real ecause of n distances. If we know this distributiodi,stanccan calculateothethisin i...
View Full Document

This document was uploaded on 02/23/2014 for the course MECH 335 at University of Victoria.

Ask a homework question - tutors are online