Separation Process Principles- 2n - Seader & Henley - Solutions Manual

024 x 100 234 mol co2 and 9766 mol air a a plot of

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: rom air at 25oC by 5-N aqueous triethanolamine Given: Feed gas containing 10 mol% CO2 and 90 mol% air. Absorbent of 5N aqueous triethanolamine containing 0.04 moles of CO2 per mole of amine solution. Column with 6 equilibrium stages. Exit liquid to contain 78.4% of the CO2 in the feed gas. Therefore, exit gas contains 21.6% of the CO2 in the entering gas. Equilibrium data for CO2 at 25oC in terms of mole ratios. Assumptions: Negligible absorption of air and stripping of amine and water. Find: (a) Moles of amine solution required per mole of feed gas. (b) Exit gas composition. Analysis: Use the nomenclature and type of plot shown in Fig. 6.11(a). Therefore, for CO2, X0 = 0.04 mol CO2/mol amine solution YN+1 = Y7 = 10/90 = 0.1111 mol CO2/mol air Y1 = 0.216(10)/90 = 0.024 mol CO2/mol air (b) Therefore, the exit gas composition is 0.024 mol CO2/mol air or 0.024/(1 + 0.024) x 100% = 2.34 mol% CO2 and 97.66 mol% air. (a) A plot of the equilibrium data as Y vs. X is given below. The operating point (X0, Y1) at the top of the column is included. A straight operating line through this point is found by trial and error to give 6 equilibrium stages, when using Y7 = 0.1111. The resulting XN = X6 = 0.085. From Eq. (6-3), the slope of the operating line = L'/V' = (0.1111 - 0.024)/(0.085 - 0.04) = 1.936 mol triethanolamine solution/mol air. The feed gas contains 9 mol air/10 mol feed gas. Therefore, mols of amine solution/mol feed gas = 1.936(0.9) = 1.74. See plot on next page. Exercise 6.7 (continued) Exercise 6.8 Subject: Absorption of acetone from air by water at 20oC and 101 kPa (760 torr) in a valve-tray column. Given: 100 kmol/h of feed gas containing 85 mol% air and 15 mol% acetone. Pure water is the absorbent. Overall tray efficiency is 50%. Absorb 95% of the acetone. Equilibrium p-x data for acetone are given as listed below. Assumptions: Negligible absorption of air and stripping of water. Find: (a) Minimum ratio, L'/V' of moles of water/mole of air. (b) Number of equilibrium stages for L'/V' = 1.25 times minimum. (c) Concentration of acetone in the exit water. Analysis: Use the nomenclature and type of plot shown in Fig. 6.11(a). Then, the operating line will be straight. For acetone, X0 = 0.0 mol acetone/mol entering water YN+1 = 0.15/0.85 = 0.1765 mol acetone/mol air in entering gas Flow rate of acetone in exit gas = (1 - 0.95)(15) = 0.75 kmol/h. With 85 kmol/h of air, Y1 = 0.75/85 = 0.00882 mol acetone/mol air Convert the p-x equilibrium data to mole ratio, Y-X data, using y = p/P, Y = y/(1- y), X = x/(1-x) p, torr x y X Y 30.0 0.033 0.0395 0.0341 0.0411 62.8 0.072 0.0826 0.0776 0.0901 85.4 0.117 0.1124 0.1325 0.1266 103.0 0.171 0.1355 0.2063 0.1568 (a) With the type of curvature in the Y-X equilibrium curve, shown below, the minimum absorbent rate is determined by a straight operating line that passes through the point (Y1 , X0 ) and is drawn tangent to the equilibrium curve, as shown. From Eq. (6-3), the slope of the operating line = L'/V' = 1.06 mol water/mol of air on an acetone-free basis = minimum ratio. (b) For 1.25 times minimum, L'/V' = 1.25(1.06) = 1.325. Now a stra...
View Full Document

Ask a homework question - tutors are online