Separation Process Principles- 2n - Seader & Henley - Solutions Manual

141274 55 cm3 therefore tc 55q therefore eq

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: continued) Exercise 3.37 Subject: Determination of diffusivity of H2S (A) in water (B) from experimental data for absorption into a laminar jet, using the penetration theory. Given: Laminar jet of D = 1 cm and L = 7 cm. Temperature, T = 20oC (293 K). Solubility of H2S in water = cA i = 100 mol/m3 (100 x 10-6 mol/cm3). Absorption rates, nA, as a function of jet volumetric flow rate, Q. Assumptions: Jet is contacted by pure H2S. Therefore, all mass-transfer resistance is in the liquid. Negligible bulk flow effect. Concentration of H2S in bulk water cA b = 0. Find: Diffusivity by penetration theory. Analysis: Use cgs units. From a rearrangement of Eq. (3-192), DAB = ( nA 2A cAi − cAi 2 π tc ) (1) Surface area of jet = A = πDL = (3.14)(1)(7) = 22.0 cm2 Assume the contact time is the time of exposure of the jet = jet volume/jet flow rate = V/Q Jet volume = V = πD2L/4 = (3.14)(1)2(7)/4 = 5.5 cm3. Therefore, tc = 5.5/Q. Therefore, Eq. (1) becomes, DAB Jet rate, cm3/s 0.143 0.568 1.278 2.372 3.571 5.142 nA = 2(22) 100 × 10 −6 − 0 Absorption rate, mol/s x 106 1.5 3.0 4.25 6.15 7.20 8.75 2 2 (314)(5.5) . 4 nA = 89.2 × 10 Q Q Diffusivity, DAB , cm2/s 1.40 x 10-5 1.41 x 10-5 1.26 x 10-5 1.42 x 10-5 1.29 x 10-5 1.33 x 10-5 Average DAB = 1.35 x 10-5 cm2/s. Experimental value at 25oC is 1.61 x 10-5 cm2/s. Note that a material balance shows that the bulk concentration of H2S in the water only reaches a high of 10.5 x 10-6 mol/cm3. Thus, the diffusivities would only be slightly higher than above. Exercise 3.38 Subject: Vaporization of water (A) into air (B) in a wetted-wall column. Given: Column inside diameter = D = 1.46 cm and length = L = 82.7 cm. Air volumetric flow rate = Q = 720 cm3/s at 24oC and 1 atm (760 torr). Water enters at 25.15oC and exits at 25.35oC. Partial pressures of water vapor in the air are 6.27 torr entering and 20.1 torr leaving. Diffusivity of water vapor in air = DAB = 0.22 cm2/s at 0oC and 1 atm. Assumptions: Negligible bulk flow effect. Ideal gas law. Negligible pressure drop in column. Find: (a) Rate of mass transfer of water into air. (b) Overall mass transfer coefficient, KG. Analysis: Use cgs units. No mass transfer resistance in the liquid phase because pure water. (a) The rate of mass transfer can be obtained from a material balance on the water content of the air using the entering and exiting partial pressures of the water vapor. For the entering air: Mole fraction of water vapor = yA = pA / P = 6.27/760 = 0.00825 Molecular weight = M = 0.00825(18) + (1-0.825)(29) = 28.9 Density = ρ =PM/RT = (1)(28.9)/(82.06)(298) = 0.00118 g/cm3 Mole flow rate of gas = n = Qρ/M =(720)(0.00118)/28.9 = 0.02941 mol/s Mole flow rate of water in entering air = n yA = 0.02941(0.00825) = 2.426 x 10-4 mol/s For the exiting air: Mole fraction of water vapor = yA = pA / P =20.1/760 = 0.02645 1 − 0.00825 = 0.02996 mol/s By ratio with entering gas, mole flow rate of gas = m = 0.02941 1 − 0.02645 Mole flow rate of water in exiting air = m yA = 0.02...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online