Separation Process Principles- 2n - Seader & Henley - Solutions Manual

2695 01510 00879 00526 x 3 09555 09033 08044 06512

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: n-Heptane/Acetone 55.9 Benzene/Acetone No azeotrope Wt% A/B 0.7/99.3 10.5/89.5 Mol% A/B 0.5/99.5 6.5/93.5 No ternary azeotrope An approximate distillation curve map on a equilateral triangular diagram, of the type in Fig. 11.3, is shown on the next page. However, it is not a sketch, but is a residue curve map drawn by the Aspen Plus program and modified to represent a distillation curve map. The distillation boundary extends from one binary azeotrope to the other, but is barely discernible. From that diagram, the following types of nodes are determined using Fig. 11.6: Component or Azeotrope n-Heptane Benzene Acetone n-Heptane/Benzene n-Heptane/Acetone Normal boiling pt., oC 98.4 80.1 56.5 80.1 55.9 Type node stable stable saddle saddle unstable Analysis: (continued) Exercise 11.4 (continued) Exercise 11.5 Subject: Calculation of a residue curve for the system acetone - benzene - n-heptane. Given:. Ternary system acetone - benzene - n-heptane at 1 atm. Assumptions: UNIFAC method for computing K-values. Find: Portion of a residue curve starting from a bubble-point liquid of 20 mol% acetone (1), 60 mol% benzene (2), and 20 mol% n-heptane (3), at 1 atm. Analysis: The residue curve is computed numerically, in the same manner as in Example 11.1, except that the bubble-point calculations at each step are made with the Chemcad FLASH model. To begin, a bubble point is run with Chemcad on the above initial liquid composition, xi(0), at 1 atm. The computed vapor composition, yi(0), is then used with the Euler form of Eqs. (11-5) and (11-6) to compute xi(1): xi(1) = xi( 0) + xi( 0) − yi( 0) ∆ξ , i = 1 to C -1 The procedure is repeated in steps of ∆ξ = 0.1 in the forward direction from ξ = 0 to ξ = 1, and ∆ξ = -0.1in the backward direction from ξ = 0 to ξ = -1. The results are as follows, with a plot on the following page. ξ -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x (1) 0.4458 0.4224 0.3985 0.3740 0.3491 0.3239 0.2986 0.2733 0.2483 0.2238 0.2000 0.1762 0.1534 0.1318 0.1118 0.0935 0.0770 0.0625 0.0500 0.0395 0.0307 x (2) 0.4248 0.4425 0.4604 0.4786 0.4969 0.5151 0.5332 0.5509 0.5681 0.5845 0.6000 0.6155 0.6298 0.6426 0.6539 0.6633 0.6708 0.6763 0.6797 0.6811 0.6807 x (3) 0.1294 0.1351 0.1411 0.1474 0.1540 0.1610 0.1682 0.1758 0.1836 0.1917 0.2000 0.2083 0.2169 0.2255 0.2343 0.2432 0.2522 0.2612 0.2703 0.2794 0.2886 y (1) 0.6723 0.6558 0.6381 0.6189 0.5981 0.5758 0.5518 0.5259 0.4983 0.4690 0.4381 0.4043 0.3689 0.3322 0.2951 0.2581 0.2218 0.1874 0.1556 0.1272 0.1019 y (2) 0.2519 0.2658 0.2807 0.2968 0.3141 0.3326 0.3525 0.3738 0.3964 0.4202 0.4452 0.4726 0.5010 0.5303 0.5596 0.5884 0.6162 0.6420 0.6651 0.6851 0.7020 y (3) 0.0758 0.0784 0.0812 0.0843 0.0878 0.0916 0.0957 0.1003 0.1053 0.1108 0.1167 0.1231 0.1301 0.1375 0.1453 0.1535 0.1620 0.1706 0.1793 0.1877 0.1961 T, o C 63.02 63.53 64.07 64.67 65.30 65.99 66.73 67.52 68.35 69.23 70.14 71.13 72.14 73.18 74.21 75.23 76.21 77.13 77.98 78.74 79.42 Analysis: (continued) Exercise 11.5 (continued) Exercise 11.6 Subject: : Calculation of...
View Full Document

Ask a homework question - tutors are online