Separation Process Principles- 2n - Seader & Henley - Solutions Manual

5 wt aniline therefore aniline flow rate in b is

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Fig. 8.26a. Minimum extract reflux ratio = 3.49. Equilibrium data in Exercise 8.22. Find: With the Maloney-Schubert method on a Y - X Janecke diagram: (a) Raffinate reflux ratio. (b) Amount of aniline that must be removed by solvent removal at the top of the extractor, as shown in Fig. 8.26a. (c) Amount of solvent that must be added to the mixer at the bottom of the extractor, as shown in Fig. 8.26a. Analysis: The liquid-liquid phase equilibrium data are given, for each phase, as mass % MCH on an aniline-free basis, and mass of aniline per mass of aniline-free mixture. Thus, the data can be plotted directly to obtain the Janecke diagram, which is shown on the next page. Referring to Fig. 8.26a, the given compositions of the feed, F, the solvent-free extract, D, and the solvent-free raffinate, B, are plotted on the diagram. By construction on the Janecke diagram, on the previous page, the compositions of the solvent-containing extract, VN , and the solvent-containing raffinate, L1 , are determined as intersections of vertical lines (drawn up from the solvent-free points to the extract and raffinate equilibrium curves. The wt% compositions of these points are read from the diagram with the aid of the tabulated equilibrium data given in the exercise statementto be: Wt%: Component Extract, VN Raffinate, L1 Aniline, S 84.0 7.5 n-Heptane, C 1.0 88.0 Methylcyclohexane, MCH 15.0 4.5 Total: 100.0 100.0 Take a basis of 1,000 kg/h of feed and make material balances for the minimum extract reflux condition. Because the feed is 50 wt% MCH and 50 wt% C, and the two solvent-free product compositions are symmetrical with respect to MCH and C, the solvent-free material balance is quickly determined to be: kg/h: Component Feed, F Extract, D Raffinate, B n-Heptane, C 500 25 475 Methylcyclohexane, MCH 500 475 25 Total: 1,000 500 500 Exercise 8.27 (continued) Analysis: (continued) Exercise 8.27 (continued) Analysis: (continued) (b) Assume the given minimum extract reflux ratio = 3.49 = LR/D in Fig. 8.36a. Then, LR = 3.49(500) = 1,745 kg/h. Therefore, the flow rate of solvent-free extract in stream VN = 1,745 + 500 = 2,245 kg/h. But, from above, this stream contains 84 wt% aniline solvent. Therefore, the flow rate of aniline in stream VN = (84/16)(2,245) = 11,790 kg/h. This is the flow rate of aniline that must be removed by the separator at the top of the cascade. (c) From above, the raffinate L1 leaving at the bottom of the cascade is 7.5 wt% aniline. Therefore, aniline flow rate in B is (7.5/92.5)(500) = 40 kg/h and B = 540 kg/h The entering solvent rate SB is, therefore, 40 + 11,790 = 11,830 kg/h. This is the amount of fresh solvent that must be added to the mixer at the bottom of the column. (a) Referring to Fig. 8.36a, define the raffinate reflux ratio as (L1 - B)/B. Because the cascade is operating at minimum reflux, assume infinite stages so that VB is in equilibrium with L1. From the Janecke diagram on the previous page, the composition of VB is obtained by the dashed tie line from B, which gives 14.5 kg anili...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online