Separation Process Principles- 2n - Seader & Henley - Solutions Manual

5706 therefore lr 10152 s also v 2s and by adsorbate

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: on was first proposed, analyzed, and substantiated by experiments in two articles by R. L. Pigford, B. Baker, and D.E. Blum, I&EC Fundamentals, 8, 848 -851 (1969) and I&EC Fundamentals, 8, 144 (1969). As with parametric pumping, the technique uses fixed beds and is based on differences in the extent of equilibrium adsorption of the two components (A and B) in the feed mixture, and a significant decrease in equilibrium adsorption as the temperature is increased. However, while parametric pumping involves periodic reversals of flow direction and temperature, cycling zone adsorption involves only reversals in temperature. Unlike other fixed-bed schemes, batch-type regeneration of the adsorbent is not required. The first sketch on the following page shows the basic idea of cycling zone adsorption. Feed fluid of a fixed composition enters a jacketed fixed bed, maintained at low temperature, TC, causing component A to be adsorbed to a greater extent than B. At breakthrough, the composition of the exiting fluid approaches that of the feed and the bed temperature is raised to TH , which causes the adsorbate, rich in component A, to be expelled, raising the concentration of A in the exiting fluid. After a time, the effluent composition again approaches that of the feed. To continuously produce two products, one richer in A, yh, than the feed, and the other leaner in A than the feed, yl, two fixed beds are employed, as shown in the second sketch on the following page. One bed is exactly one-half cycle out of phase with the other. The output of each column is periodically switched, but the degree of separation is limited. The degree of separation is significantly improved by employing two or more beds, called zones, in series, as in the third sketch on the following page. Compared to parametric pumping, theoretical analysis predicts that n cycling zones is equivalent to n parametric pumping cycles. Thus, much more equipment is required for cycling zone adsorption than for parametric pumping. However, with the former, products are produced continuously, instead of in batches. A further simplification in operation is achieved by replacing the jacketed beds by heat exchangers in the manner of the two recuperative mode in parametric pumping, as shown in the fourth sketch. In the review article by N. H. Sweed, AIChE Symp. Series, 80, No. 233, 44-53 (1984), parametric pumping and cycling zone adsorption, after more than 15 years following their invention, are found to have remained laboratory curiosities, despite their early promise. This is probably due to difficulties in swinging the temperature, and the popularity of PSA for gas. Exercise 15.33 (continued) Analysis: (continued) Exercise 15.34 Subject: Separation of propylene from propane by continuous, countercurrent adsorption. Given: Feed gas mixture of 55 mol% propane (C3) and 45 mol% propylene (C3=). Continuous, countercurrent adsorption at 25oC and 1 atm with silica gel. Equilibrium data in Exercise 15.9. Find: Using the McCabe-Thiele method...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online