Separation Process Principles- 2n - Seader & Henley - Solutions Manual

9 29 is applied in the following form for each of the

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ter method: Rigorous Chemcad: Component Feed, Vapor Stripped Vapor Stripped lbmol/h product, liquid, product, liquid, lbmol/h lbmol/h lbmol/h lbmol/h C1 59.5 59.5 0.0 59.5 0.0 C2 73.6 73.6 0.0 73.6 0.0 C3 153.2 153.1 0.1 153.1 0.1 nC 4 173.5 147.6 25.9 150.8 22.7 nC 5 58.2 12.3 45.9 12.7 45.5 nC 5 33.6 6.2 27.4 2.6 31.0 Total: 551.6 452.3 99.3 452.3 99.3 The Edmister method is uncertain because average temperature and vapor rate are difficult to estimate. Exercise 9.28 Subject: Comparison of FUG method with Edmister group method for distillation. Given: Bubble-point liquid feed in kmol/h of 100 ethylbenzene, 100 paraxylene, 200 metaxylene, and 100 orthoxylene. Column pressures of 25 psia at the top and 35 psia at the bottom. Distillate to contain 1 kmol/h of orthoxylene and bottoms to contain 2 kmol/h metaxylene. Column to be equipped with a total condenser and partial reboiler. Assumption: Applicability of Raoult's law for estimating K-values. Find: (a) Number of stages and reflux ratio by the FUG method for R/Rmin = 1.1 Feed-stage location by the Kirkbride equation. (b) Distribution of components between distillate and bottoms by Edmister method. Analysis: Need K-values at distillate, feed, and bottoms conditions. Because metaxylene and paraxylene have very close boiling points, assume the d/b ratio of paraxylene is the same as that for metaxylene. Therefore, have 1 kmol/h of paraxylene in the bottoms. Use Chemcad to obtain K-values by running bubble points on the feed, and estimated distillate and bottoms compositions. The results are: K-values: b, 25 psia, 30 psia, 35 psia, Component d, kmol/h kmol/h 159.3oC 168.4oC 180.5oC Ethylbenzene, EB 100 0 1.051 1.080 1.206 Paraxylene, PX 99 1 0.986 1.012 1.131 Metaxylene, MX 198 2 0.982 1.012 1.136 Orthoxylene, OX 1 99 0.855 0.884 0.996 Total: 398 101 distillat feed bottoms e (a) Using the Fenske equation (9-12), with MX as the LK and OX as the HK, with a geometric mean relative volatility = [(0.982/0.855)(1.136/0.996)]1/2 = 1.144 log N min = d MX bOX d OX bMX log ( α MX,OX )avg log = (198 ) ( 99 ) (1) ( 2 ) log1.144 = 68. 3 To compute the distribution of nonkey components at total reflux, use for the lighter than light key components, LLK, Eq. (9-15), with OX as the reference component, r, and the above value of Nmin. Exercise 9.28 (continued) Analysis: (a) (continued) Thus, for the LLK, i, bi = fi d N min 1 + OX α i,OX bOX = fi 1 68.3 1+ α i,OX 99 (1) Using geometric mean values of αi, OX, with Eq. (1) and the material balance, fi = di + bi , the following results are obtained: kmol/h: Component Feed Distillate Bottoms EB 100 99.99 0.01 PX 100 99.00 1.00 MX 200 198.00 2.00 OX 100 1.00 99.00 Total: 500 397.99 102.01 Because it is highly likely that PX, and possibly EB, will distribute, use the Class 2 Underwood equation, Eq. (9-28),which for a bubble-point feed, using relative volatilities at the feed conditions is: α i ,OX zi , F 12217(0.20) 11448(0.20) 11448(0.40) 100(0.20) . . . . (2) = 1− q = 0 = + + + 12217 − θ 11448 − θ 1144...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online