Separation Process Principles- 2n - Seader & Henley - Solutions Manual

A damping factor of 025 was used with a maximum of 50

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: K and 11 bar. Methanol feed of 215.5 mol/s at 320 K and 11 bar to stage 10. Column operates at 11 atm and has 15 equilibrium stages, with a total condenser and partial reboiler. Reflux ratio = 7 and bottoms flow rate is set at 197 mol/s. Catalyst for the reaction is provided in the amount of 204.1 kg/stage only at stages 4 through 11. Kinetic data is given in Example 11.9, but substitute activities for mole fractions in the kinetic equations. Use UNIQUAC method for liquid-phase activity coefficients, with the binary interaction parameters in Example 11.9, and RK EOS for vapor-phase fugacities. Find: Distillate and bottoms products, and comparison of results with those of Example 11.9. Analysis: Kinetic equations for the reaction rates are most often written in terms of component concentrations, component mole fractions, or component partial pressures (in the case of gasphase reactions). However for liquid-phase reactions when the components form a non-ideal solution, chemical equilibrium can only be satisfied when the rate equation is written in terms of activities (product of mole fraction times liquid-phase activity coefficient). For the formation of MTBE from isobutene and methanol, the Rehfinger and Hoffmann article was developed in terms of component activities. However, in Example 11.9, component mole fractions are used, as seen in Eqs. (1) and (2). This assumes that all component activity coefficients are equal to one. With Aspen Plus, built-in kinetic rate-law expressions are not available in terms of activities. Therefore, a FORTRAN subroutine for the rate-law must be provided. On the following four pages, the Aspen Plus input data are listed for solving this exercise. Under the Aspen Plus paragraph REACTIONS R-MTBE-U REAC-DIST, reference is made to the usersupplied subroutine RAMTBE. This subroutine is listed on the subsequent five pages, where the kinetic rate equation is written in terms of activities. The Aspen Plus input data are written to explore the variation of methanol feed stage. For methanol fed to stage 10, the conversion of isobutene, when using activities, is 99.5% compared to a 95.6% conversion in Example 11.9, where mole fractions are used. Analysis: (continued) Exercise 11.23 (continued) Analysis: (continued) Exercise 11.23 (continued) Analysis: (continued) Exercise 11.23 (continued) Analysis: (continued) Exercise 11.23 (continued) Exercise 11.23 (continued) Analysis: (continued) Analysis: (continued) Exercise 11.23 (continued) Exercise 11.23 (continued) Analysis: (continued) Analysis: (continued) Exercise 11.23 (continued) Analysis: (continued) Exercise 11.23 (continued) Exercise 11.24 Subject: Reactive distillation of isobutene (IB) with methanol (M), in the presence of n-butene (NB) to produce MTBE. Chemical equilibrium at each stage that has catalyst. Given: Mixed butenes feed of 195.44 mol/s of IB and 353.56 mol/s of NB entering stage 11 as a vapor at 350 K and 11 bar. Methanol feed of 215.5 mol/s at 320 K and 11 bar to stage 10. Column operates at 11 atm and has 15 equilibrium stages, with a total condenser and partial reboiler....
View Full Document

Ask a homework question - tutors are online