Separation Process Principles- 2n - Seader & Henley - Solutions Manual

Constant relative volatility of 25 for b with respect

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: egral Cumulative ln(W0/W) 0.113 0.342 0.213 0.178 0.115 0.013 0.012 0.113 0.455 0.668 0.846 0.961 0.974 0.986 Exercise 13.9 Analysis: (continued) The results in the above table indicate that all of the isopropanol is evaporated, because at xW = 0.002, the value of ln(W0/W) = 0.986, which corresponds to W/W0 = 0.565 or only 43.5 mol% distilled. By the time, 70 mol% of the isopropanol is evaporated, the mole fraction of isopropanol in the residue will be essentially 0. The mole fraction of isopropanol in the cumulative distillate = 40/70 = 0.571. Exercise 13.10 Subject: Batch distillation of a mixture of benzene (B) and toluene (T) in a column with 3 equilibrium stages and a reboiler (4 total stages), under conditions of a constant reflux ratio. Given: Feed of 100 moles contains 30 mol% B and 70 mol% T. Distillation at 1 atm with a reflux of L/V = 0.6. Constant relative volatility of 2.5 for B with respect to T. Assumptions: Perfect mixing in the still. No holdup on the stages or in the condenser. Find: Moles of residue when the cumulative distillate is 45 mol% B. Analysis: Make calculations in terms of B, the more volatile component. Eq. (13-2) applies, where yD is the mole fraction of B in the instantaneous vapor leaving the top stage, and xW is the mole fraction of B in the liquid in the reboiler. 0.30 W0 100 dxW = ln = (1) xW y − x W W D W From Eq. (13-6), the mole fraction of benzene in the cumulative distillate is given by: 30 − WxW y D avg = 0.45 = (2) 100 − W 15 or xW = 0.45 − (3) W From Eq. (4-8), the vapor-liquid equilibrium curve is given by, αx 2.5x y= = (4) 1 + x (α − 1) 1 + 15x . This is the equilibrium curve for applying the McCabe-Thiele method. The relationship between yD and xW in Eq. (1) is obtained from a McCabe-Thiele diagram by drawing a series of operating lines of slope = L/V = 0.6. For each operating line, starting from the intersection with the 45o line, which is yD, 4 stages are stepped off to determine the corresponding xW. A typical construction that starts from yD = 0.74 is shown on the next page, where the xW = 0.277. Other sets of values are given in the following table. yD xW 0.78 0.307 0.74 0.277 0.70 0.245 0.60 0.185 0.50 0.145 0.40 0.107 0.30 0.077 0.20 0.050 ln Exercise 13.10 (continued) Analysis: (continued) A curve fit of the above data gives: 2 yD = 0.0059054 + 4.24118 xW − 5.66817 xW (5) Substituting Eq. (5) into Eq. (1) gives: ln 100 = W 0.30 xW dxW 2 0.0059054 + 4.24118 xW − 5.66817 xW (6) Exercise 13.10 (continued) Analysis: (continued) Eq. (6) can be solved analytically or numerically. A numerical solution is used here with a spreadsheet. The integral is evaluated by the trapezoidal rule. The following table starts at the upper limit of 0.30 and moves in increments downward. For each increment, the increment of the integral from x1 to x2 is (x1 - x2)(f1/2 + f2/2), where f is the integrand. For the addition of each integral increment, W is computed, and then the benzene mole fraction in the cumulative d...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online