Separation Process Principles- 2n - Seader & Henley - Solutions Manual

Separation Process Principles 2n Seader& Henley Solutions Manual

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: trays, feed location, and reflux ratio. Analysis: A valve is used to drop the feed pressure to column pressure. The calculations were made with the Tower model (Inside-out method) of Chemcad. It was understood that the Chemcad TOWER model would adjust the reflux rate and distillate rate to achieve the specified distillate temperature and bottoms impurities. Thus, the initial specifications for the TOWER model of the Chemcad program were as follows, where it was assumed that the main impurity in the bottoms product would be ethane. Partial condenser Top pressure = 128 psia Condenser pressure drop = 0 psi. Column pressure drop = 4 psi. Number of stages = 12 (includes partial condenser and partial reboiler) Feed stage =3 from the top as a first estimate. At the top, distillate temperature = 100oF. At the bottom, bottoms purity = 0.0005 mole fraction of ethane Estimated distillate rate = 50 lbmol/h Estimated reflux rate = 100 lbmol/h Estimated temperature of stage 1 = 100oF (actual specification) Estimated temperature of bottom stage = 400oF Estimated temperature of stage 2 = 300oF A flash of the feed at feed conditions upstream of the feed valve showed it to be liquid. Convergence of the calculations was achieved rapidly in 6 iterations, with a converged reflux ratio, however of only 0.186, with a distillate rate of 48.715 lbmol/h. Thus, the reflux rate to the top stage was only 9.06 lbmol/h compared to 1748.4 lbmol/h of feed. This is considered to be unsatisfactory. Therefore, a second run was made with the feed entering the top stage (Stage 2) and reducing the number of stages to 7 (including the partial condenser and partial reboiler). A converged result shown on the next two pages was obtained in 5 iterations. This design is considered more satisfactory and achieves the specifications. The impurity in the bottoms is mainly ethane, as assumed. Other results are: reflux ratio = 0.0.211, condenser duty = 2,515,000 Btu/h, and reboiler duty = 12,976,000 Btu/h. The column will contain 5/0.7 = 8 trays. Analysis: (continued) Exercise 10.34 (continued) Exercise 10.34 (continued) Analysis: (continued) Exercise 10.35 Subject: Simulation of a four-stage, nearly isothermal distillation process by flash calculations. Given: Problem specifications in Figure 10.36, consisting of the feed conditions and temperature and pressure for each of four isothermal flashes. Assumptions: Grayson-Streed correlation for K-values and Redlich-Kwong equation for enthalpies. Find: Component flow rates for all equilibrium vapor and liquid streams. Analysis: The Chemcad simulator was used with its FLASH model in the isothermal flash mode. Referring to Figure 10.36, the recycle process was simulated with L1, V3, and V4 as the cut (tear) streams, with the sequence of calculations being Stages 2, 1, 3, and 4. No initial estimates were given for the cut streams. Convergence was achieved in 19 iterations using direct substitution. The resulting stream compositions are given below: Analysis (continued) Exercise 10.35 (continued) Exercise 10.36 Subject: Effect of...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online