{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Separation Process Principles- 2n - Seader &amp; Henley - Solutions Manual

# Daltons law find a number of equilibrium stages

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a straight operating line that passes through the operating point (Y0 = 0 , X1 = 0.01) at the bottom of the column, as shown in Fig. 6.11(b) and is drawn tangent to the equilibrium curve, as shown. From Eq. (6-5), the slope of the operating line = L'/V' = 3.0 mol B/mol of steam on a B-free basis. Therefore, (V’')min/L' = 0.33. This is compared to the given operating value of L'/V' = 2.0 or V'/L' = 0.5. Analysis: (continued) (a) Plot of results: (b) Plot of results: Exercise 6.9 (continued) Exercise 6.10 Subject: Stripping of benzene (B) from straw oil by steam at 1 atm (101.3 kPa). Given: Oil enters stripper with 8 mol% benzene. 75% of B is stripped. Pure steam enters. Steam exits with 3 mol% B. Sieve-plate column. Henry's law holds with a B partial pressure of 5.07 kPa when benzene mole fraction in the oil is 10 mol%. Assumptions: Straw oil is not volatile and steam does not condense. Dalton's law. Find: (a) Number of equilibrium stages required. (b) Moles of steam required per 100 moles of benzene-oil feed to stripper. (c) Number of equilibrium stages needed if 85% of B is stripped with same amount of steam as in Part (b). Analysis: With reference to the stripper in Fig. 6.11(b), XN+1 = 8/92 = 0.087 mol B/mol B-free oil Y0 = 0.0 mol B/mol B-free steam YN = 3/97 = 0.0309 mol B/mol B-free steam (b) For 100 moles of benzene-oil feed mixture, have 8 moles of benzene. Amount of benzene stripped = 0.75(8) = 6 moles. Because the exit gas contains 0.0309 mol B/mol B-free steam, the steam rate = 6/0.0309 = 194 moles. Therefore, moles of steam/100 moles of benzene-oil feed = 194 Also, X1 = (8 - 6)/92 = 0.0217 mol B/mol B-free oil (a) Assume Henry's law is given by Eq. (4-32), pB = HxB.. Because pB = 5.07 kPa when xB = 0.10, H = 5.07/0.1 = 50.7 kPa. Convert this to an a Y-X equilibrium equation. For a pressure of 101.3 kPa, assuming Dalton's law, yB = pB/P = 50.7xB/101.3 = 0.5xB . From Eq. (6-1), dropping the benzene subscript, B, and noting that KB = 0.5, KB = 0.5 = Y / (1 + Y ) X / (1 + X ) Solving, Y = 0.5 X 1 + 0.5 X (1) The Y-X plot includes the equilibrium curve given by Eq. (1), and a straight operating line that connects the column terminal points (Y0 = 0.0, X1 = 0.0217) and (YN = 0.0309, XN+1 = 0.087). The corresponding slope of the operating line is (0.0309 - 0.0)/(0.087 - 0.0217) = L'/G' = 0.474. From the plot below, stepping off stages as in Fig. 6.11(b), required N = approximately 3 stages. (c) For 85% stripping of B, amount of B stripped = 0.85(8) = 6.8 moles B. Not stripped is1.2 moles B. Therefore, for the same B-oil and steam feeds, X1 = 1.2/92 = 0.01304 mol B/mol oil and YN =6.8/194 = 0.03505 mol B/mol steam. The Y-X plot for this case is also given below, where the equilibrium curve is the same as in Part (a), and a straight operating line connects the column terminal points (Y0 = 0.0, X1 = 0.01304) and (YN = 0.03505, XN+1 = 0.087). The corresponding slope of the operating line is (0.03505 - 0.0)/(0.087 - 0.01304) = L'/G' = 0.474 (same as in Part (a)). From the plot below, stepping off stages as in Fig. 6.11(b), required N = between 5 and 6 stages....
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online