{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Separation Process Principles- 2n - Seader & Henley - Solutions Manual

Exercise 817 subject stage requirements for

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: entering the extractor. On the following page, the equilibrium stages are stepped on another right triangle diagram, as in Fig. 8.17, by determining the operating point P from extensions of lines drawn through points F and E, and S and R, followed by alternating between operating lines and equilibrium tie lines. The result is 5 equilibrium stages. Analysis: Exercise 8.15 (continued) Case of 80oC: The given liquid-liquid equilibrium data are plotted in the right-triangle diagram below. Included on the diagram are composition points F for the feed, R for the raffinate on the equilibrium curve, and S for the solvent. A straight line extends from point F to point S. Because the mass flow rates of the feed and solvent are equal, the mixing point, M, is located at the midpoint of this line. Another straight line extends from point R to point M, and then to an intersection with the equilibrium curve at point E, which is the final extract. Using the inverse lever-arm rule on line RME, the mass ratio of R to E is 0.383. Combining this with an overall material balance: F + S = 500 + 500 = 1,000 = R +E gives R = 277 kg/h and E = 723 kg/h. From the diagram, the mass fraction of DPH in the extract is 0.271. Therefore, the DPH in the extract is 0.271(723) = 195.9 kg/h, which is 93.3% of the total DPH entering the extractor. On the following page, the equilibrium stages are stepped on another right triangle diagram, as in Fig. 8.17, by determining the operating point P from extensions of lines drawn through points F and E, and S and R, followed by alternating between operating lines and equilibrium tie lines. The result is 4+ equilibrium stages. o Exercise 8.15 (continued) Analysis: (case of 80 C continued) Exercise 8.16 Subject: Selection of extraction method. Given: Four ternary systems in Fig. 8.43. Diagrams 1, 2, 4 are Type I. Diagram 3 is Type II. Find: Method for most economical process for each system. Methods are: (a) Countercurrent extraction (CE). (b) CE with extract reflux (ER). (c) CE with raffinate reflux (RR). (d) CE with ER and RR. Analysis: Note that y1 is the composition of the extract. Raffinate reflux (RR) is of little value, so don't use it. For Type I diagrams, extract reflux is rarely useful. All three Type I diagrams exhibit solutropy, making it almost impossible to obtain a good separation. The Type II diagram uses a poor solvent, making the use of extract reflux questionable. Summary: Use CE for all four systems. However, better solvents should be sought for all four systems. Exercise 8.17 Subject: Stage requirements for extraction of acetone (A) from two feeds, of different composition of acetone (A) and water (C), with a solvent of 1,1,2 - trichloroethane (S). Given: Feed F of 7,500 kg/h containing 50 wt% A in C. Second feed F' of 7,500 kg/h containing 25 wt% A in C. Solvent of 5,000 kg/h of S. Raffinate to contain 10 wt% A. Liquidliquid equilibrium data from Exercise 8.11. Find: Number of equilibrium stages and feed locations, using a right-triangle...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern