Separation Process Principles- 2n - Seader &amp; Henley - Solutions Manual

# Table of adsorption equilibrium data for water in

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: xercise 15.9 (continued) Analysis: (c) (continued) MathCAD Program 188.07 0.237 1.960 227.51 533.39 0.519 1.494 310.19 457.61 0.607 1.445 403.33 357.67 0.575 1.466 401.89 p1 := 581.13 351.71 0.717 1.246 410.43 p2 := 462.96 355.87 0.614 q1 := 291.04 1.353 q2 := 0.709 1.265 468.74 284.86 1.027 0.824 471.40 282.60 1.192 0.509 568.48 191.52 1.219 0.467 681.26 78.74 0.504 1.489 699.96 60.04 0.572 0.854 12 SSE( Q1, Q2, K1, K2) := q1 − Q1⋅ K1⋅ i =1 i Q1 := 2.5 2 p1 i + (1 + K1⋅ p1i + K2⋅ p2i) Q2 := 2.8 q2 − Q2⋅ K2⋅ i K1 := 0.002 i 1 + K1⋅ p1 + K2⋅ p2 i K2 := 0.004 Given SSE( Q1, Q2, K1, K2) 0 1 1 1 1 1 1 Q1 Q2 K1 := Minerr( Q1, Q2, K1, K2) K2 Q1 = 2.153 Q2 = 4.042 K1 = 0.001642 SSE ( Q1, Q2, K1, K2 ) = 3.501 2 p2 K2 = 0.001997 i Analysis: (d) (continued) Exercise 15.9 (continued) MathCAD Program 188.07 0.237 1.960 227.51 533.39 0.519 1.494 310.19 457.61 0.607 1.445 403.33 357.67 0.575 1.466 401.89 p1 := 581.13 351.71 0.717 1.246 410.43 p2 := 462.96 355.87 0.614 q1 := 291.04 q2 := 0.709 1.353 1.265 468.74 284.86 1.027 0.824 471.40 282.60 1.192 0.509 568.48 191.52 1.219 0.467 681.26 78.74 0.504 1.489 699.96 60.04 0.572 0.854 12 SSEQ1, Q2, K1, K2, N1, N2 := ( ) q1 − Q1K1 ⋅⋅ i =1 Q1 := 1 i Q2 := 4 2 (p1i) N1 N1 N2 1 + K1 ( p1 ) + K2 ( p2 ) ⋅ ⋅ i i + q2 − Q2K2 ⋅⋅ i K2 := 0.001 K1 := 0.001 (p2i) N2 N1 N2 1 + K1 ( p1 ) + K2 ( p2 ) ⋅ ⋅ i i N1 := 0.5 N2 := 0.5 Given SSE( Q1, Q2, K1, K2, N1, N2) 0 1 1 1 1 1 1 1 1 1 1 Q1 Q2 K1 K2 := Minerr( Q1, Q2, K1, K2, N1, N2) N1 N2 Q1 = 1.706 Q2 = 4.507 K1 = 0.027 K2 = 0.037734 N1 = 0.628 SSE ( Q1, Q2, K1, K2, N1, N2 ) = 2.583 N2 = 0.527 2 Analysis: (continued) Exercise 15.9 (continued) (e) The relative selectivity is given by αC3,C3= = yC3(1 - xC3)/[xC3(1 - yC3)] (4) Using the mixture data with Eq. (4), the following results are obtained: Pressure, y, x, α torr C3 C3 C3 to C3= 769.2 0.2445 0.1078 2.678 760.9 0.2990 0.2576 1.229 767.8 0.4040 0.2956 1.615 761.0 0.5300 0.2816 2.877 753.6 0.5333 0.3655 1.984 766.3 0.5356 0.3120 2.543 754.0 0.6140 0.3591 2.839 753.6 0.6220 0.5550 1.319 754.0 0.6252 0.7007 0.713 760.0 0.7480 0.7230 1.137 760.0 0.8964 0.2530 25.547 760.0 0.9210 0.4010 17.415 For the mixture, propane adsorption is favored over propylene adsorption and α varies widely. Exercise 15.10 Subject: Use of the extended Langmuir-Freundlich isotherm to fit mixture data for the system acetone (1), propionitrile (2) on activated carbon at 25oC. Given: Mixture adsorption data in terms of solution concentrations in mol/L and loadings on the adsorbent in mmol/g. Find: Coefficients in the extended Langmuir-Freundlich isotherm Analysis: From Eq. (6) in Example 15.6, the extended Langmuir-Freundlich equations are: q1 = 1 q0 1 k1c1 / n1 (1) 1 1 1 + k1c1 / n1 + k 2 c2/ n2 q2 = 1 q0 2 k 2 c2/ n1 (2) 1 1 1 + k1c1 / n1 + k 2 c2/ n2 Fit mixture adsorption equilibrium data for c1, c2, q1, and q2 to obtain the coefficients (q0)1, (q0)2, k1, k2, n1, and n2. Rather than fitting both Eqs. (1) and (2) simultaneously, the...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online