Separation Process Principles- 2n - Seader & Henley - Solutions Manual

The npa rich phase would be recycled to the column as

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: converge the material balance for the recycle process. Exercise 11.20 (continued) Analysis: (continued) The resulting material balance was as follows: Stream in Fig. 11.31a Component Water Benzene Isopropanol Total: Mol/sec: D1 D3 L2 V2 B2 D2 B3 39.6 0 80.4 120.0 5.8 0.2 6.1 12.1 19.9 169.3 99.5 288.7 65.2 169.5 105.8 340.5 0.1 0.0 80.2 80.3 45.3 0.2 6.3 51.8 39.5 0.0 0.2 39.7 From the above material balance, the isopropanol product purity is 99.9 mol% and the water product purity is 99.6 mol%. The benzene loss is negligible. The material balance lines are shown on the triangular diagram on the following page. The separation in column 1 is in distillation region 1, but the decanter sends the distillate, D2, into region 2 where the separation in column 3 occurs. The composition profiles for columns 2 and 3 are shown in two subsequent pages, where it is seen that no pinch zones are evident. Exercise 11.20 (continued) Analysis: (continued) Exercise 11.20 (continued) Analysis: (continued) Exercise 11.21 Subject: Separation of a mixture of acetic acid (A) and water (W) into nearly pure acetic acid and pure water, using a two-column sequence that includes heterogeneous azeotropic distillation with n-propyl acetate (NPA). Given: 1,000 kmol/h of 20 mol% acetic acid in water. Find: A suitable two-column design. Analysis: The phase behavior of the acetic acid/water/n-propyl acetate system at 1 atm was explored with the UNIQUAC equation for liquid-phase activity coefficients, noting that the normal boiling points in oC are 118.1 for A, 100 for water, and 101.4 for NPA. Using the ChemCad and Aspen Plus programs, the following data were obtained, including a residue curve map for the vapor-liquid system at 1 atm and a ternary liquid-liquid diagram for the system at 80oC, both shown on the next page. Acetic acid and water form a minimum-boiling azeotrope at 90 mol% water that boils at 99.47oC. Acetic acid and n-propyl acetate do not form an azeotrope. Water and n-propyl acetate form a heterogeneous azeotrope at approximately 40 mol% NPA and 80oC. This azeotrope separates into a mixture of almost pure water and 83 mol% NPA. The two diagrams show that a ternary mixture, when distilled will tend to give a bottoms of almost pure acetic acid and an overhead that when condensed will split into two liquid phases, one of near pure water, and the other of concentrated NPA that can be recycled to the column as entrainer. Consider a separation sequence that omits the preconcentator column shown in Fig. 11.31 because the feed is already concentrated in water. The feed is sent directly into the heterogeneous azeotropic distillation column with a decanter to split the two liquid phases resulting from the condensation of the overhead vapor. An initial geometrical construction for determining the separation in that column is included in the ternary diagram on the next page. The feed, F, of 800 kmol/h of W and 200 kmol/h of A enters the column along with an entrainer, R, of saturated NPA-rich phase containing 1...
View Full Document

This document was uploaded on 02/24/2014 for the course CBE 2124 at NYU Poly.

Ask a homework question - tutors are online