Homework 11

# Homework 11 - M341 H11(S Zhang 3.5-6,6.1-3 1 Find the...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: M341 H11 (S. Zhang) 3.5-6,6.1-3. 1. Find the transition matrix from [ e 1 , e 2 ] to [ u 1 , u 2 ], then the transition matrix from [ u 1 , u 2 ] to [ e 1 , e 2 ]. u 1 = 1 1 , u 2 =- 1 1 ans: (3.5:1a,2a) A given vector can be written as linear combinations of different basis. v = v 1 e 1 + v 2 e 2 = [ e 1 , e 2 ] v 1 v 2 v = u 1 u 1 + u 2 u 2 = [ u 1 , u 2 ] u 1 u 2 u 1 u 2 = U- 1 I v 1 v 2 = S v 1 v 2 In general, from V to U , S = U- 1 V . From [ u 1 , u 2 ] to [ e 1 , e 2 ]. S = I- 1 U = U = 1- 1 1 1 From [ e 1 , e 2 ] to [ u 1 , u 2 ], S = U- 1 I = 1 / 2 1 / 2- 1 / 2 1 / 2 u1=[1 1]; u2=[-1 1] U=[u1 u2] iU=inv(U) 2. Find the transition matrix from [ e 1 , e 2 ] to [ u 1 , u 2 ], then the transition matrix from [ u 1 , u 2 ] to [ e 1 , e 2 ]. u 1 = 1 2 , u 2 = 2 5 ans: (3.5:1b,2b) A given vector can be written as linear combinations of different basis. v = v 1 e 1 + v 2 e 2 = [ e 1 , e 2 ] v 1 v 2 v = u 1 u 1 + u 2 u 2 = [ u 1 , u 2 ] u 1 u 2 u 1 u 2 = U- 1 I v 1 v 2 = S v 1 v 2 In general, from V to U , S = U- 1 V . From [ u 1 , u 2 ] to [ e 1 , e 2 ]. S = I- 1 U = U = 1 2 2 5 From [ e 1 , e 2 ] to [ u 1 , u 2 ], S = U- 1 I = 5- 2- 2 1 u1=[1 2]; u2=[2 5] U=[u1 u2] iU=inv(U) 3. Find the transition matrix from [ e 1 , e 2 ] to [ u 1 , u 2 ], then the transition matrix from [ u 1 , u 2 ] to [ e 1 , e 2 ]. u 1 = 1 2 , u 2 = 2 5 ans: (3.5:1c,2c) A given vector can be written as linear combinations of different basis. v = v 1 e 1 + v 2 e 2 = [ e 1 , e 2 ] v 1 v 2 v = u 1 u 1 + u 2 u 2 = [ u 1 , u 2 ] u 1 u 2 u 1 u 2 = U- 1 I v 1 v 2 = S v 1 v 2 In general, from V to U , S = U- 1 V . From [ u 1 , u 2 ] to [ e 1 , e 2 ]. S = I- 1 U = U = 1 1 From [ e 1 , e 2 ] to [ u 1 , u 2 ], S = U- 1 I = 1 1 u1=[0 1]; u2=[1 0]; U=[u1 u2] iU=inv(U) 4. Let u 1 = ( 1 , 1 , 1 ) T , u 2 = ( 1 , 2 , 2 ) T , u 3 = ( 2 , 3 , 4 ) T . Find the transition matrix corresponding to the change of basis from [ e 1 , e 2 , e 3 ] to [ u 1 , u 2 , u 3 ]. Find the coordinates of each of the following vectors with respect to [ u 1 , u 2 , u 3 ]. v 1 = 3 2 5 , v 2 = 1 1 2 , v 3 = 2 3 2 ans: (3.5:5) The transition matrix S = U- 1 I = 1 1 2 1 2 3 1 2 4 - 1 = 2- 1- 1 2- 1- 1 1 v 1 = 3 2 5 , v u = Sv v = S 3 2 5 = 1- 4 3 1 To check: Uv u = V v = 1 1 2 1 2 3 1 2 4 1- 4 3 = 3 2 5 v 2 = 1 1 2 , v u = Sv v = S 1 1 2 = - 1 1 v 2 = 2 3 2 , v u = Sv v = S 2 3 2 = 1 u1=[1 1 1]; u2=[1 2 2]; u3=[2 3 4]; U=[u1 u2 u3] iU=inv(U) iU*[3 2 5; 1 1 2;2 3 4] 5. Let u 1 = ( 1 , 1 , 1 ) T , u 2 = ( 1 , 2 , 2 ) T , u 3 = ( 2 , 3 , 4 ) T . Let v 1 = ( 4 , 6 , 7 ) T , v 2 = ( , 1 , 1 ) T , v 3 = ( , 1 , 2 ) T . Find the transition matrix from [ v 1 , v 2 , v 3 ] to [ u 1 , u 2 , u 3 ]. Find the coordinates of...
View Full Document

{[ snackBarMessage ]}

### Page1 / 9

Homework 11 - M341 H11(S Zhang 3.5-6,6.1-3 1 Find the...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online