{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

quiz2solutions

# pe k 2 2 k m c2 c which means that we have p1x

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: #### ######### 2 ######## E He- L = Hm c2 L + H pe cL2 = K + m c2 which yields !!!!!!!!!!!! 1 è !!!!!!!!!!!!!!!! pe = ÅÅÅÅ K 2 + 2 K m c2 c which means that we have p1,x ! !!!!!!!!!!!! 1 è!!!!!!!!!!!!!!!! MeV Ø p1,x = ÅÅÅÅÅcÅÅ K 2 + 2 K m c2 º 0.711 ÅÅÅÅÅÅÅÅÅÅÅÅ 2 c How do we find p1,y then? We can use the energy E1 to find the magnitude p1 , 11 p1 = E1 ê c = ÅÅcÅÅ H ÅÅÅÅ K + m c2 L 2 2 2 2 and then use p x + p y = p and solve for p1,y p1,y 2 = p1 2 - p1,x 2 1 1 1 = ÅÅÅÅÅÅ H ÅÅÅÅ K + m c2 L - H ÅÅÅÅÅcÅÅ L HK 2 + 2 K m c2 L c2 2 2 2 1 1 = ÅÅÅÅÅÅ I ÅÅÅÅ K m c2 + Hm c2 L M c2 2 2 2 2 #### 1 1 MeV 2 p1,y = ÅÅcÅÅ "################ + Hm c2 L ## º 0.718 ÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅ K m c################ Å 2 c From what we said before about the other g, !!!!!!!!!!!! 1 è!!!!!!!!!!!!!!!! p2,x = ÅÅÅÅÅcÅÅ K 2 + 2 K m c2 2 2 #### 1 1 2 p = - ÅÅÅÅ "################ + Hm c2 L ## ÅÅÅÅ K m c################ Finally, Ø 2,y (d) c 2 Finally, to obtain q, we just use the relation py tan q = ÅÅÅÅ1,ÅÅÅÅ Å p 1, x Substituting the numbers from above gives 0.718 tan q = ÅÅÅÅÅÅÅÅÅÅÅÅÅ º 1.011 0.711 q º 0.79 radians º 45 ° This of course makes sense, since p y º px (look at the sketch). 2. Trapping Antim...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online