Homework 1 Solutions

N l m2 l cos 0 sin 0 mg sin 0 1 5 6 7 8 9 10 38 a

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: d @L @L - Lagrange multiplier. ˙ dt @✓ = @✓ , where @✓ 2¨ 22 ml ✓ = m⌦ l cos ✓ sin ✓ + mgl sin ✓ + , ¨ ✓ = 0, ✓ = ✓0 . N = l = m⌦2 l cos ✓0 sin ✓0 mg sin ✓0 . 1 5 6 7 8 9 10 3.8 A point mass m slides without friciton inside a surface of revolution z = α sin(r/R) whose symmetry axis lied along the direction of a uniform gravitational field g. Consider 0 < r/R < 1 π . 2 (a) Construct the lagrangian L and compute the equations of motion for the generalized coordinates r and φ. The lagrangian is 1 α ˙ L = m r 2 + r 2 φ2 + ˙ 2 R 2 r R r2 cos2 ˙ − mgα sin r . R The equation of motion are d ˙ mr2 φ = 0, dt α2 α r ˙ mr 1 + ¨ = mrφ2 + m cos2 R R R 2 r2 sin ˙ r α r r cos − mg cos . R R r R ˙ Note that angular momentu...
View Full Document

Ask a homework question - tutors are online