Specifically the first step encompasses the following

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: tion of system components Facilities Plan— Identifies all real property assets required to develop, test, maintain, and operate the system, and identifies those requirements that can be met by modifying existing facilities. It should also provide cost and schedule projections for each new facility or modification. Disposal Plan—Covers equipment, supplies, and procedures for the safe and economic disposal of all items (e.g., condemned spares), including ultimately the system itself. The cost of ILS (and hence the life-cycle cost of the system) is driven by the inherent reliability and maintainability characteristics of the system design. The project level system engineer must ensure that these considerations influence the design process through a well-conceived ILS program. In brief, a good-practice approach to achieving cost-effective ILS includes efforts to: • • • • • 6.5.3 Develop an ILS program plan, and coordinate it with the SEMP (Part III) Perform the technical portion of the plan, i.e., the Logistics Support Analysis, to select the best combined system and LS alternative, and to quantify the resulting logistics resource requirements Document the selected ILS system and summarize the logistics resource requirements in the ILSP Provide supportability inputs to the system requirements and/or specifications Verify and validate the selected ILS system. ILS Tools and Techniques: The Logistics Support Analysis The Logistics Support Analysis (LSA) is the formal technical mechanism for integrating supportability considerations into the systems engineering process. The LSA is performed iteratively over the project life cycle so that successive refinements of the system design move toward the supportability objectives. To make this happen, the ILS engineer identifies supportability and supportability-related design factors that need to be considered in trade studies during the systems engineering process. The project-level system engineer imports these consideration...
View Full Document

This document was uploaded on 02/26/2014 for the course E 515 at University of Louisiana at Lafayette.

Ask a homework question - tutors are online