It is also a good approximation for weakly

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: atoms into a single state and then found the state by minimizing the energy. We can also have macroscopic condensation of particles into a single state that is not stationary but undergoes dynamic evolution. This form of dynamics is exact for non-interacting particles, when all particles undergo identical evolution determined by the external fields (assuming that all atoms started in the same state). It is also a good approximation for weakly interacting particles. The role of interactions is to provide an effective field acting on the atoms. This effective field needs to be computed self-consistently according to the instantaneous value of the density. Equation describing such self-consistent dynamics is called the Gross-Pitaevskii (GP) equation. We rewrite Hamiltonian (3.1) in real space rather than momentum space 3.2. GROSS-PITAEVSKII EQUATION 9 representations. We also add external potential Vext (r, t) for generality H= 1 2m d3 r | Ψ|2 d3 r Vext (r, t)Ψ† (r)Ψ(r) + + − µ U0 2 d3 r Ψ† (r)Ψ† (...
View Full Document

This document was uploaded on 02/27/2014 for the course PHYS 284 at Harvard.

Ask a homework question - tutors are online