Ch 15 - Chi-Squared _Categorical Data_

5 23265 53 strawberrys 2023 2623 46 total 75 75 150

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: rred Strawberry overall, if the distributions for boys and girls are the same (H0 is true), then we would expect 23 of these children to be boys and the remaining 23 of these children to be girls. Note that our sample sizes were the same, 75 boys and 75 girls, 50% of each. If they were not 50‐50, we would have to adjust the expected counts accordingly. Let’s do the same for the Vanilla and Chocolate preferences. Chocolate: Since there were 53 children who preferred Chocolate overall, if the distributions for boys and girls are the same (H0 is true), then we would expect 26.5 of these children to be boys and the remaining 26.5 of these children to be girls. Vanilla: Since there were 51 children who preferred Vanilla overall, if the distributions for boys and girls are the same (H0 is true), then we would expect 25.5 of these children to be boys and the remaining 25.5 of these children to be girls. Enter these expected counts in the parentheses in the table below. Observed Counts (Expected Counts) Ice Cream Preference Boys Girls Total Vanilla (V) 25( 25.5 ) 26 ( 25.5 ) 51 Chocolate (C) 30( 26.5 ) 23 ( 26.5 ) 53 Strawberry (S) 20( 23 ) 26 ( 23 ) 46 Total 75 75 150 A Closer Look at the Expected Counts: Let's look at how we actually computed an expected count so we can develop a general rule: If H0 were true (i.e., no difference in preferences for boys versus girls), then our best estimate of the P(a child prefers vanilla) = 51/150. Since we had 75 boys, under no difference in preference, we would expect 75 x (51/150) to prefer vanilla. That is, the expected number of boys preferring vanilla = 150 . This quick recipe for computing the Total n expected counts under the null hypothesis is called the Cross‐Product Rule. ( 75 )( 51) (row total)(column total) 212 The X 2 test statistic Next we need to compute our test statistic, our measure of how close the observed counts are to what we expect under the null hypothesis. 25 25.52 26 25.52 30 26.52 23 26.52 20 232 26 232 X2 25.5 25.5 26.5 26.5 23 23 1.73 There are 6 cells...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern