Review-Test2

# Sinx sin 1 2 sinx2 s sinx sinx 1 inx2 sinx2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ityfandatx)e= x)e,cos()x+ e f (x)2 esin(x) Local = 00 (x) = x sin( +sin(x ) cos( x 22 (x) = Pointsx)eInfection (find2f’’(x))) sin( of sin(x) + cos(x) esin(x x) f 0 (x) = cos(x)esin(sin(x) f 00 (x) = 00 (sin(=) esin(x))2cos(in(2 )D in(x) 2 R} 00 2 ) x s = {x f)e x) x cos(x x)s xsin(x) f (x) = sin(x e ⇡+⇡ 3 cos( 3⇡ e , cos(x) = 0 x) > x = 2 , = 00 sin( 2 f ( x) = e cos(x)2 2 in(x) s (2k + f 00⇡x) = 00 =) cos(x)2 = sin(x) 1) ( f )0(x) k =) cos(x)2 = 00 , where= 0is2an integer = sin(x) 2 f (x) = esin(x cos(x) 2 sin(x) 2 sin ( 1) cos(x) cos(x) x= sin(x) = sin( ) 1 2 sin(x)2 s= sin(x= sin(x) 1 in(x)2 ) sin(x)2 sin(x)2x+ sin(=)0 1 = 0 + sin( ) 1 x p p p p 4( (5) 1 1 ± 1 2 412 1)(1) 1)(1) 1± ( (5) 1 ± sin(x)sin(x) = = = ±= 2 2 2 2 22 sin(x) = sin(x) + sin(x) 1 = 0 1 p p 1 ± 12 4( 1)(1) (5) 1 =)± x f 002x) = 0 =) cos(x22 = sin(2 ) sin(x ( p p)2 = sin(x) 1± 1 cos(x (5) x = arcsin 1 ±sin(x)2 = sin(x) = ⇡sin(x) 2 2 sin(x) = sin(x)2 + sin(x) 1 = 0 p p 2 = 1± 1 0 1 4( 1)(1) = 1 ± x(5) , 2 2 10 2 p 0 arcsin 1 ± (5) ⇡ x= 2 2 0 3 10 , 10 0 Plotting the Curve p (5) 1 rcsinL’hopitals Rule: ± ⇡ 2 2 Case 1 10 , 10 0 0 Action Use L’hopital’s rule. (Take derivative of top and bottom) sin(x) cos(x) f (x) = lim = lim =1 x!0 x!0 x 1 3 x = lim x!0 sin(1) x lim =1 cos(x) = lim =1 x!0 1 x L Case’hopital’sction A Rule cos(x) lim = 1 Move one of the x!0 1 to the 0 · 1 functions 0 · 1 bottom so we can use L’hopital’s rule 0·1 x!0 lim+ x ln(x) = lim+ x!0 1 ( ) = lim+ 1 x! 0 x!0 1 x 1 x2 ln(x) 1 x 1 ( ) = lim+ 1 x! 0 = lim+ x = 0 x!0 1 x 1 x2 = lim+ x!0 (x) 1 x 1 1 ( 1 + x!0x x2lim ) = lim 1 = x ! 0+ x2 x ! 0+ L Case’hopital’s Rule Action Pull out a common factor 11 1 0 1 0 1 0 ,1 ,1 x ! 0+ x=0 1 1 L Case’hopital’s Rule A...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online