1ls3_lectures1617

# 3x 2 a f x cose b g x csc x c

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ue of the   The slope of a tangent line to the curve  func0on at that point.                is equal to the value of the   func0on at that point.  € x Deriva0ves of Exponen0al Func0ons  f ( x) = a , If                   then  f ' ( x ) = a ⋅ ln a. x x Example:  € Diﬀeren0ate.  x g( x ) = 7 x + x 7      (c)  h ( x )  = 2 5 x + 1  (a)     ( x )  = e      (b)             f 2 € € € Deriva0ves of Logarithmic Func0ons  1 . f ( x ) = log a x, If                           then  f ' ( x ) = x ⋅ ln a Example 1:   Diﬀeren0ate.  (a)  f ( x ) = ln  x    (b)  g( x ) = log 4 ( x 2 + 5 x + 6)  € Example 2:  Determine the equa0on of the tangent line to the  €x ln curve                        at the point   P (1, 0). f ( x) =          x € € € Deriva0ves of Trigonometric Func0ons  2 y = sin x y = sin x 1         -5   -4 -3    -2 -1 0 1 2 3 4 5 € € -1 -2 2 y = cos x 1 -5 -4 -3 -2 -1 0 1 2 € -1 -2...
View Full Document

## This note was uploaded on 03/03/2014 for the course MATH 1LS3 taught by Professor Lovric during the Winter '09 term at McMaster University.

Ask a homework question - tutors are online