232sol6 (1)

# P p 7 6 a2 b z1 z1 z1 64z1 641 3i 64 64 3i p 2 a2

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: z1 = 26 cos(6( ⇡ /3)) + i sin(6( ⇡ /3)) = 64(1 + 0i) = 64. p p 7 6 A2 (b): z1 = z1 z1 = 64z1 = 64(1 3i) = 64 64 3i p 2 A2 (c): z2 has absolute value 02FRASER UNIVERSITY argument ⇡ /2: Dr. Marni MISHNA, Department of Mathematics, SIMON + 1 = 1 and Version of: 11-Dec-09 z2 = cos(⇡ /2) + i sin(⇡ /2), so then 103 z2 = cos(103(⇡ /2)) + i sin(103(⇡ /2)) 3⇡ 3⇡ = cos(50⇡ + ) + i sin(50⇡ + ) 2 2 3⇡ 3⇡ = cos( ) + i sin( ) 2 2 = 0 + i( 1) = Or recognize that i2 = 1(i) = i. 1, so i4 = 1. Thus i100 = (i4 )25 = 1, so then i103 = i100 i3 = (1)(i3 ) = i3 = (i2 )i = A2 (d): z3 has absolute value C EDRIC C HAUVE , FALL 2013 i. q 1 2 + 1 2 = 1 and argument ⇡ /4: z3 = cos( ⇡ /4) + i sin( ⇡ /4), 1 f a cu lty of sc ie nce d ep ar tment of mathem atics Week Date 1 Sept 7 I.1, I.2, I.3 2 14 I.4, I.5, I.6 3 21 II.1, II.2, II.3 4 28 II.4, II.5, II.6 5 Oct 5 III.1, III.2 6 12 IV.1, IV.2 7 19 IV.3, IV.4 8 26 9 Nov 2 so then Sections from FS2009 IV.5 V.1 9 VI.1 12 ⇡ A.3/ C i 2 23 IX.3 25 IX.4 13 30 Dec 10 10 Topic/Sections MATH 232 A SSIGNMENT #6 Notes/Speaker Combinatorial Structures FS: Part A.1, A.2 Comtet74 Handout #1 (self study) Symbolic methods Handout #1 (self-study) Asymptotic methods ⇡ i 2 Introduction to Prob. Mariolys FS: Part C (rotating presentations) Combinatorial instances of discrete Mariolys Continuous Limit Laws Marni Quasi-Powers and Gaussian limit laws Sophie 29 z3 Unlabelled structures/4)) + i sin(29( ⇡ /4)) = cos(29( ⇡ 5⇡ 5⇡ Labelled structures I = cos( 6⇡ ) + i sin( 6⇡ ) 4 Labelled structures II 4 5⇡ 5⇡ Combinatorial Combinatorial =...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online