Midterm-Exam Aid

# 8 linear equations 95 d efinition 81 a rst order

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ISE 4. Calculate ￿ ￿ ￿￿￿ ￿￿ ￿￿￿ ￿ ￿￿ ￿ ￿ S OLUTION. Resist the urge to factor ￿￿￿ ￿ ￿￿ ￿ ￿ and instead complete the square: ￿￿￿ ￿ ￿￿ ￿ ￿ ￿ ￿￿￿ ￿ ￿￿￿ ￿ ￿￿ Make the substitution ￿ ￿ ￿￿ ￿ ￿ so that ￿￿ ￿ ￿￿, and so ￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿￿ ￿ ￿￿￿ ￿ ￿ ￿￿ ￿ ￿ ￿ ￿￿ ￿￿ ￿ ￿ Now, we are in a position to use the trigonometric substitution ￿ ￿ ￿ ￿￿￿ ￿, so that ￿￿ ￿ ￿ ￿￿￿ ￿ ￿￿￿ ￿ ￿￿, and so ￿ ￿ ￿￿ ￿ ￿ ￿￿￿ ￿ ￿￿￿ ￿ ￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿￿ ￿ ￿ ￿ ￿￿ ￿ ￿￿￿ ￿￿ ￿ ￿ ￿ ￿ ￿ ￿ ￿￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿￿￿ ￿ ￿ ￿￿￿ ￿￿ ￿ ￿￿ ￿ ￿ To return to our variable ￿, we must construct the triangle generated by ￿￿￿ ￿ ￿ ￿ , yielding ￿￿￿ ￿ ￿ ￿ ￿ ￿ ￿ ￿ ￿ ￿ ￿. Then ￿ ￿ ￿ ￿ ￿￿ ￿ ￿ ￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿ ￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿ ￿￿ ￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿￿￿ ￿ ￿ ￿ ￿ ￿ ￿￿ ￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿ ￿ ￿ ￿ ￿ ￿￿￿ ￿ ￿￿ ￿ ￿ where we absorb the constant ￿￿￿ ￿ ￿ into ￿ . Finally, converting back to our original variable ￿ gives ￿ ￿ ￿ ￿￿ ￿ ￿ ￿￿ ￿ ￿￿ ￿￿￿ ￿ ￿ ￿ ￿￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿￿￿ ￿ ￿￿ ￿ ￿ 4 Improper Integrals (7.8) Previously, we dealt with integrals on a ﬁnite interval, with continuous integrands. An improper integral is one that does not satisfy these conditions. D EFINITION 4.1. Type I improper integrals. ￿￿ (i) If ￿ ￿ ￿￿￿ ￿￿ exists for every number ￿ ￿ ￿, then ￿ ￿ ￿ ￿ ￿￿￿ ￿￿ ￿ ￿￿￿ ￿￿￿ ￿ provided this limit exists. ￿￿ (ii) If ￿ ￿ ￿￿￿ ￿￿ exists for every number ￿ ￿ ￿, then ￿ ￿ ￿ ￿￿￿ ￿￿ ￿ ￿￿￿ ￿￿ ￿￿￿￿ provided this limit exists. 16 ￿ ￿ ￿￿￿ ￿￿￿ ￿ ￿ ￿ ￿ ￿￿￿ ￿￿￿ ￿ WATERLOO SOS E XAM -AID: MATH138 M IDTERM ￿￿ ￿￿ The improper integrals ￿ ￿ ￿￿￿ ￿￿ and ￿￿ ￿ ￿￿￿ ￿￿ are called convergent if the corresponding limit exists (ﬁnite is included in this deﬁnition) and divergent if the limit does not exist. ￿￿ ￿￿ Finally, if both ￿ ￿ ￿￿￿ ￿￿ ￿￿ and ￿￿ ￿ ￿￿￿ ￿￿ are convergent, then we deﬁne ￿￿ ￿￿ ￿￿ ￿ ￿￿￿ ￿￿ ￿ ￿ ￿￿￿ ￿￿ ￿ ￿ ￿￿￿ ￿￿￿ ￿ ￿￿ ￿ Here, any real number ￿ can be used (exercise 74 in section 7.8). E XAMPLE 8. Determine if the following integral converges, and if so, ﬁnd its value. ￿￿ ￿￿ ￿￿￿￿￿ ￿ ￿￿ ￿ ￿￿￿￿￿ ￿ ￿￿ ￿ ￿￿￿ ￿￿ S OLUTION. By deﬁnition, if the integral converges, then ￿￿ ￿ ￿￿ ￿￿￿￿￿ ￿ ￿￿ ￿ ￿￿￿￿￿ ￿ ￿￿ ￿ ￿￿ ￿ ￿￿￿ ￿...
View Full Document

## This document was uploaded on 03/04/2014 for the course MATH 138 at Waterloo.

Ask a homework question - tutors are online