10.3 Matched Samples

# Sudbury 8 2 the mean difference between 10 how can

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ns (σ1 and σ2 unknown) Option 1 Population Mean test statistic upper tail test Hypothesis Tests lower tail test two-tailed test Difference Between 2 Population Means x −µ (x1 − x2)− D0 0 tSTAT = tSTAT = , df Optionn1: s s 2 s22 1 degrees of freedom = n – + =… Independent Samples n1 n2 1 • generates two sets of H0: μ ≤ can H0: μ1 – μ2≤ D0 data which μ0 be Ha: μ &gt; μ0 Ha: μ1 – μ2&gt; D0 treated as 2 reject H0 if tSTAT &gt; tα or p-value&lt;α reject H0 if tSTAT &gt; tα or p-value&lt;α populations • H0: μ1 – μ2 ≥ D0 can H0: μ ≥ μ0 analyze the Ha: μ &lt; μ0 Ha: μ1 – μ2 &lt; D0 difference between reject H0 if tSTAT &lt;– tα or p-value&lt;α reject H0 if tSTAT &lt;– tα or p-value&lt;α the 2 population means as already H0: μ = μ0 H0: μ1 – μ2= D0 Ha: μ ≠ μ0 Ha: μ1 – μ2≠ D0 demonstrated for reject H0 if tSTAT &lt; 10.2 tSTAT &gt; –tα/2 or reject H0 if tSTAT &lt; –tα/2 or tSTAT &gt; Outcome-value&lt;α tα/2 or if p tα/2 or if p-value&lt;α Hypothesis Tests about the Difference between Two Population Means (σ1 and σ2 unknown) Option 2 Difference Between 2 Population Means Population Mean test statistic upper tail test tSTAT = x −µ 0 sn tSTAT = degrees of freedom = n – 1 H0: μ = μ0 Ha: μ ≠ μ0 reject H0 if tSTAT &lt; –tα/2 or tSTAT &gt; tα/2 or if p-value&lt;α reject H0 if tSTAT &lt; –tα/2 or tSTAT &gt; tα/2 or if p-value&lt;α • Hypothesis Tests H0: μ ≥ μ0 Ha: μ &lt;...
View Full Document

Ask a homework question - tutors are online