P value two tailed test df s 2 2s22 1 option n1 n2

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 0 • reject H0 if tSTAT <– tα or p-value<α two-tailed test , df s 2 2:s22 1 Option + =… n1 n2 Matched Samples canH0: μ1 – μ2≤ single generate a D0 set Ha: μ1 –based0 of data μ2> D on trejectdifference or p-value<α he H0 if tSTAT > tα between1the 2 ≥ D0 H0: μ – μ matched sample μ1 – μ2 < D0 Ha: pairs can H0 if tSTAT <– the p-value<α reject analyze tα or difference as a single H0: μ1 – μ2= D0 population– μ2≠ D0 Ha: μ1 H0: μ ≤ μ0 Ha: μ > μ0 reject H0 if tSTAT > tα or p-value<α lower tail test (x1 − x2)− D0 Statistical Inference about the Difference between Two Population Means: Matched Samples Population Mean test statistic upper tail test t STAT = d − µ0 sd n degrees of freedom = n – 1 H0: μD ≤ μ0 Ha: μD > μ0 reject H0 if tSTAT > tα or p-value<α Hypothesis Tests lower tail test H0: μD ≥ μ0 Ha: μD < μ0 reject H0 if tSTAT <– tα or p-value<α two-tailed test H0: μD = μ...
View Full Document

This document was uploaded on 03/05/2014.

Ask a homework question - tutors are online