10.4 Proportions

# p 11 1 21 2 n n 1 2 d z2 p p p p 11 1 21 2 n n 1 2 dz

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: hesis Tests standard error σx = margin of error z2 α interval estimate p±z 2 α p1−p () n p( − p) 1 n p1−p () n p( −p) p ( −p ) 11 1 21 2 + n n 1 2 σ= d z2 α p( −p) p ( −p ) 11 1 21 2 + n n 1 2 d±z 2 α p( −p) p( −p) 11 1 21 2 + n n 1 2 Standard error calculation is based on the two sample proportions and sample sizes Statistical Inference about the Difference between Two Population Proportions Population Proportion Difference Between 2 Population Proportions parameter p D = p1 – p2 point estimator p d p− 2 =1 p Hypothesis Tests standard error σx = margin of error z2 α interval estimate p±z 2 α p1−p () n p( − p) 1 n p1−p () n p( −p) p ( −p ) 11 1 21 2 + n n 1 2 σ= d z2 α p( −p) p ( −p ) 11 1 21 2 + n n 1 2 d±z 2 α p( −p) p( −p) 11 1 21 2 + n n 1 2 As always, the margin of error is determined by the sampling distribution and standard error Statistical Inference about the Difference between Two Population Proportions Population Proportion Difference Between 2 Population Proportions parameter p D = p1 – p2 point estimator p d p− 2 =1 p Hypothesis Tests standard error σx = margin of error z2 α interval estimate p±z 2 α p1−p () n p( − p) 1 n p1−p () n p( −p) p ( −p ) 11 1 21 2 + n n 1 2 σ= d z2 α p( −p) p ( −p ) 11 1 21 2 + n n 1 2 d±z 2 α p( −p) p( −p) 11 1 21 2 + n n 1 2 As always, the interval estimate is fo...
View Full Document

## This document was uploaded on 03/05/2014.

Ask a homework question - tutors are online